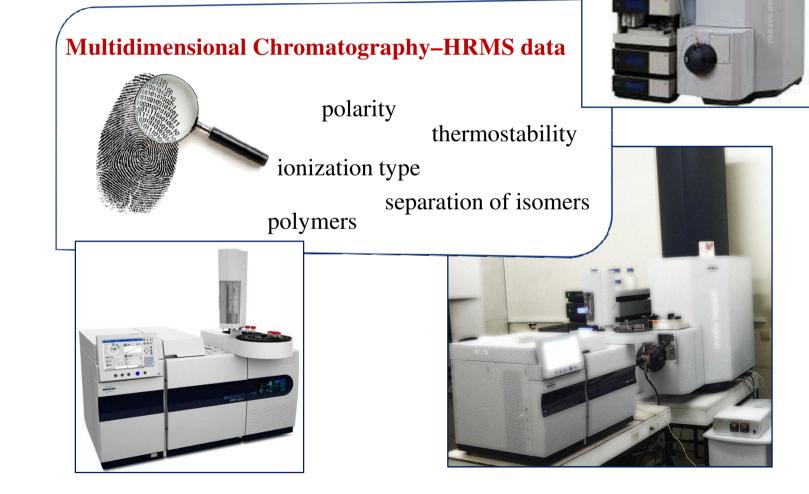


National and Kapodistrian University of Athens School of Science, Department of Chemistry Laboratory of Analytical Chemistry

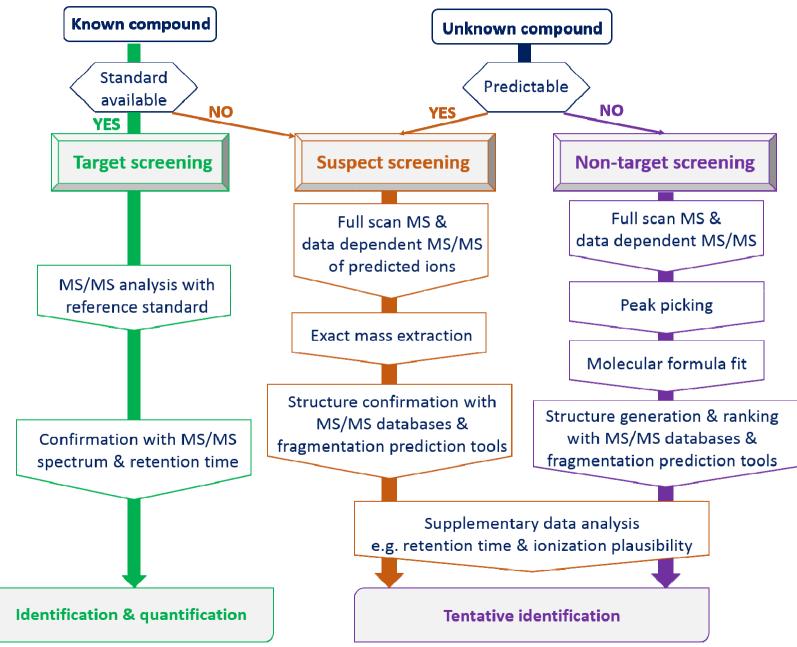
Non-target Screening Workflows & Applications in Environmental Analysis

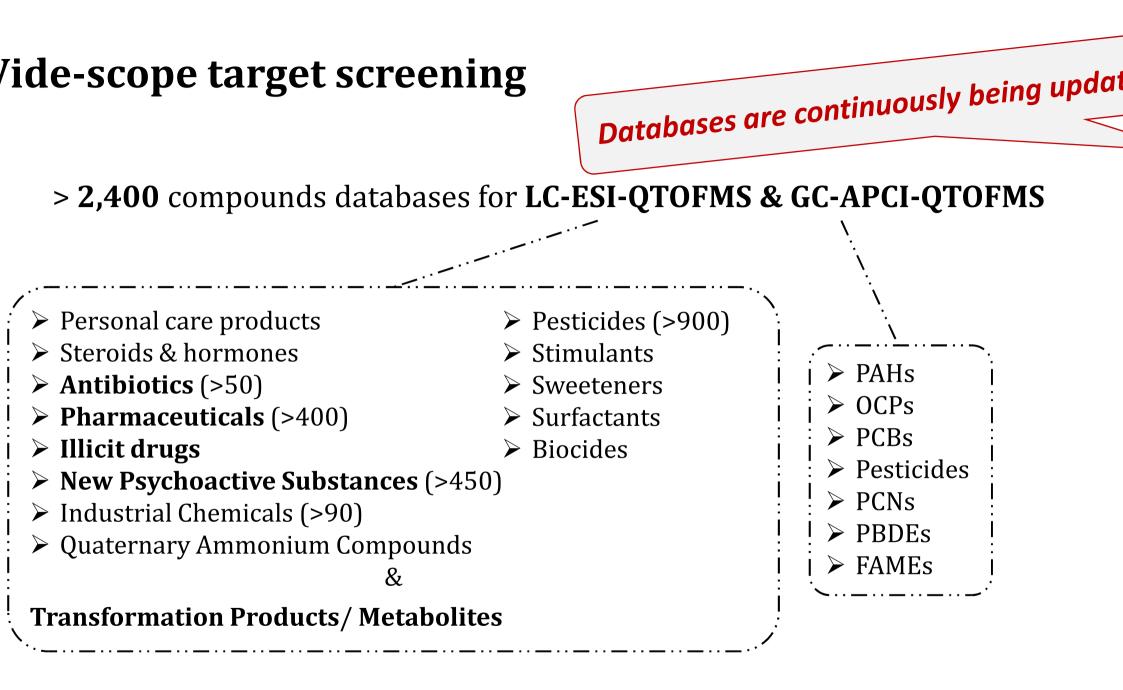
Prof. Nikolaos S. Thomaidis

University of Athens, Greece

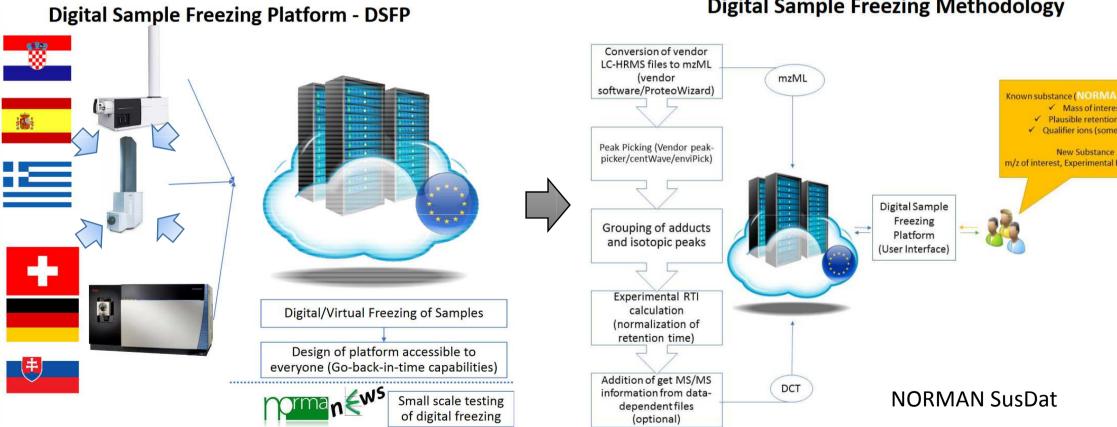


Non-target Screening Instrumentation


- ≻ LC-ESI-QTOF
- ➤ GC-APCI-QTOF
- ≻ GC-EI-MS/MS

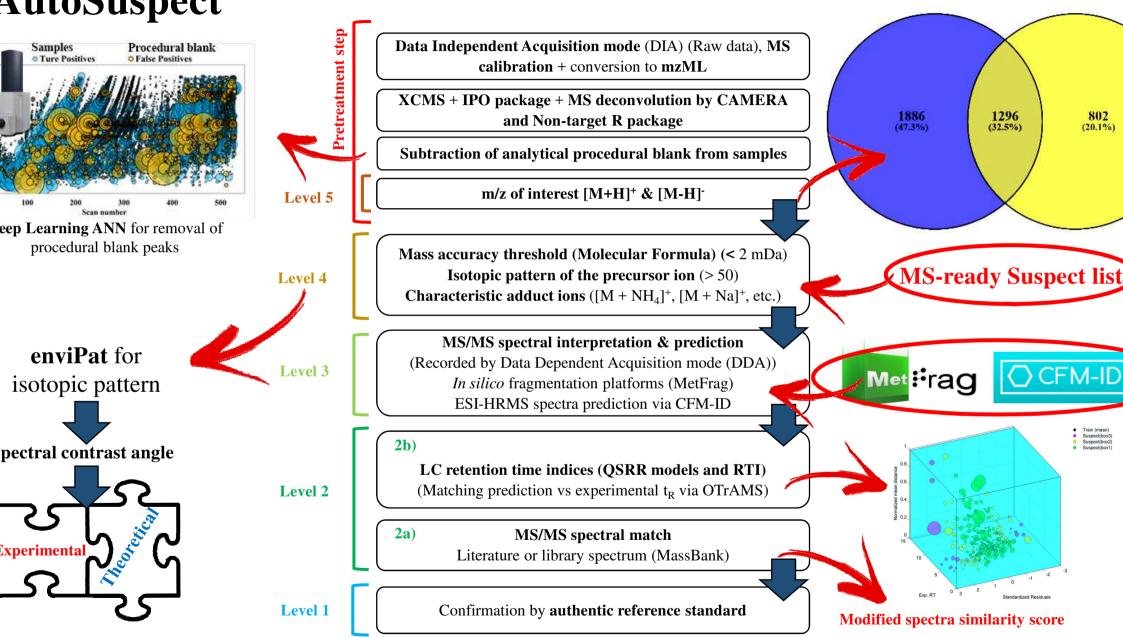

- <u>Coming soon...</u>
- LC-TIMS-QTOFMS
- ≻ MALDI-TOFMS

eveloped Workflows



atabase Development

	Precurs	sor ion			Adduct	Fragments			
1					*				
	A	В	С	D	E	F	G	Н	
1	m/z	RT	formula	name	Qual7 formula	Qual8 formula	Qual1	Qual2	Qual3
1880	584.2886	1.26	C21H41N7O12	Streptomycin-Dihydro					
1881	335.1754	4.16	C21H22N2O2	Strychnine			184.0757	264.1019	307.1441
1882	383.2493	12.21	C24H31F1N2O1	STS-135			135.1168	232.1132	206.134
1883	249.1022	13.61	C16H12N2O	Sudan I			156.0427	232.0982	128.0481
1884	277.1335	14.94	C18H16N2O	Sudan II					
1885	387.2101	7.31	C22H30N2O2S1	Sufentanil			238.126	111.0263	355.1839
1886	329.0245	5	C14H13ClO5S	Sulcotrione	C14H13ClO5SNH4^1+		139.0389	157.0492	111.0443
1887	277.0641	4.72	C13H12N2O3S	Sulfabenzamide		C13H12N2O3SNa^1+	92.0495	108.0444	156.0114
1888	285.0208	4.56	C10H9CIN4O2S	Sulfachloropyridazine			120.0562	156.0118	108.0457
1889	313.0521	3.96	C12H13CIN4O2S	Sulfaclomide			158.048	108.0444	92.0495
1890	285.0208	5.45	C10H9CIN4O2S	Sulfaclozine			156.0118	108.0457	157.015
1891	251.0597	3.48	C10H10N4O2S	Sulfadiazine		C10H10N4O2SNa^1+	92.0495	108.0444	96.0556
- 1892	255.0848	3.38	C10H6D4N4O2S	Sulfadiazine-d4					
1893	293.0703	4.11	C12H12N4O3S	Sulfadiazine-N4-Acetyl			136.0738	198.0203	293.0699
1894	315.106	5.46	C12H10D4N4O4S	Sulfadimethoxin-d4		C12H10D4N4O4SNa^1	308.176	263.1178	156.0763
1895	311.0809	5.6	C12H14N4O4S	Sulfadimethoxine			156.0762	218.0235	108.044
- 1896	353.0914	6.23	C14H16N4O5S	Sulfadimethoxine-N4-Acetyl					
1897	279.091	4.31	C12H14N4O2S	Sulfadimidine (Sulfamethazine)			122.0716	124.0872	126.0663
1898	283.1161	4.21	C12H10D4N4O2S	Sulfadimidine-d4					
1899	311.0809	4.75	C12H14N4O4S	Sulfadoxine		C12H14N4O4SNa^1+	108.0444	92.0495	156.0114


spect screening workflows

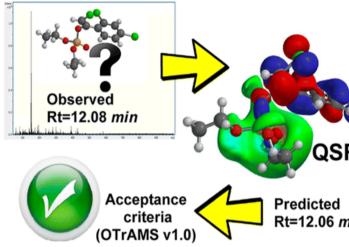
Digital Sample Freezing Platform (DSFP)

Digital Sample Freezing Methodology

AutoSuspect

CAMER

Non-target


In-house developed retention time prediction tools supporting suspect and non-target screening

Retention time prediction models

LC-ESI(+/-)-QTOFMS & HILIC-ESI(+/-)-QTOFMS

Retention time index (RTI)

Harmonization of retention time among laboratories *(different instruments and/or chromatographic methods)*

J. Chem. Inf. Model., 2016, 56, 1384–1398

Applications of retention time index prediction tools

- NORMAN SusDat Database
- EPA Chemistry Dashboard, Comp Tox (to be applied)
- 2 NORMAN Collaborative trials (river water & indoor dust) and ENTACT (EPA)
- KWR Round Robin Test (surface water, ground water and drinking water analysis via non-target scre
- Numerous National & International Scientific Projects
- (EMBLAS II, Tremepol, WaterMicropol, Monitoring of Asopos river basin, HBM4EU, c.a.)

FI Program for LC-(+/-)ESI-HRMS

🚮 UOA RTI

+ESI

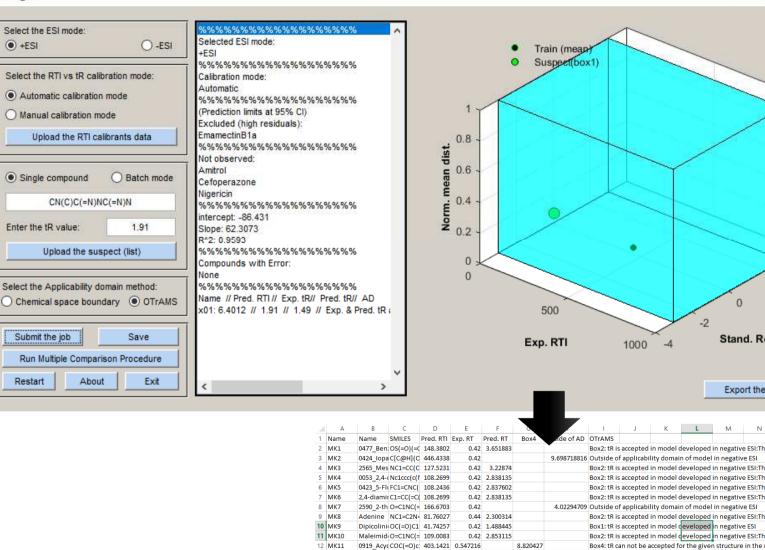
Restart

Box1: tR is accepted in model developed in negative ESI

4

UOA-RTI version 2.0.0

adeh, Emma L. Schymanski, Juliane Hollender, Martin Krauss, Maria rtinez, Jaroslav Slobodnik, Nikolaos S. Thomaidis


ratefully acknolwedge the contributions of all those invloved in the of UOA-RTI system.

Dr. Nikolaos S. Thomaidis Professor of Analytical Chemistry Department of Chemistry, University of Athens Panepistimiopolis Zografou 157 71 Athens Greece Tel: +30 210 727 4317 Fax: +30 210 727 4750 Office: 4th floor, Wing E, Office 10 Email: ntho@chem.uoa.gr

was partially funded by NORMAN Joint Programme of Activities in 2016.

0919 AcvcCOC(=O)c 403,1421 0.547216

2595 Oxy O=C1NC(= 63.57966 0.547216 1.93147

External set OTrAMS internal fitting (+)

12 MK11

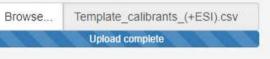
13 MK12

FI website for LC-(+/-)ESI-HRMS (coming soon...)

evelopment and Prediction of Retention Time Indices for LC-HRMS (version 2.0.0)

Retention Time Indices for LC-HRMS (version 2.0.0):

ional and Kapodistrian University of Athens


elect the target ESI:

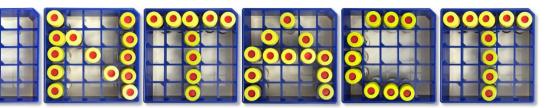
- +ESI
- -ESI

elect the RTI versus tR calibration mode:

- Prediction limits
- Auto-calibrate
- Manual

pload RTI calibrants data...

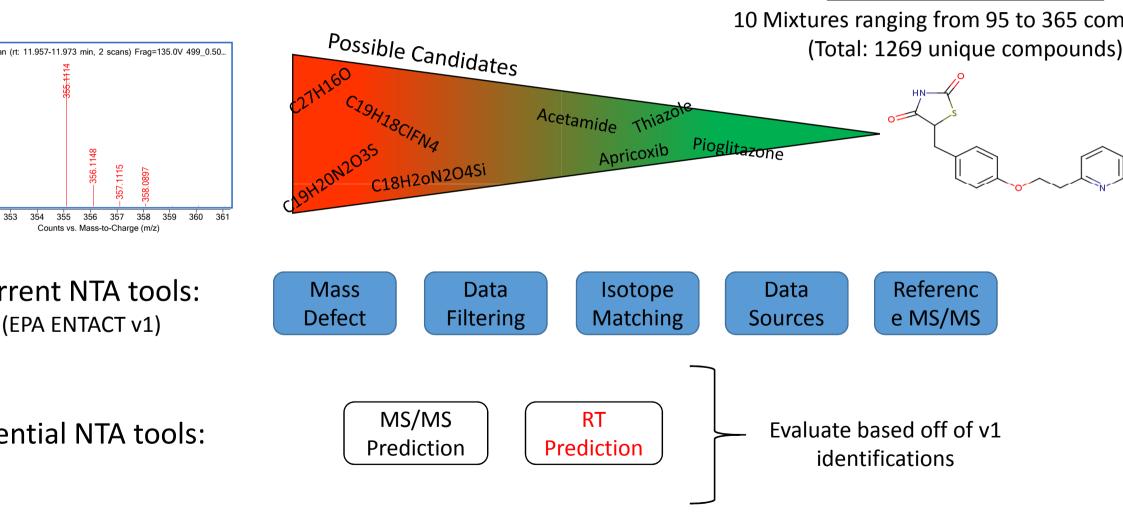
efalut max. file size 1MB (*.csv file)

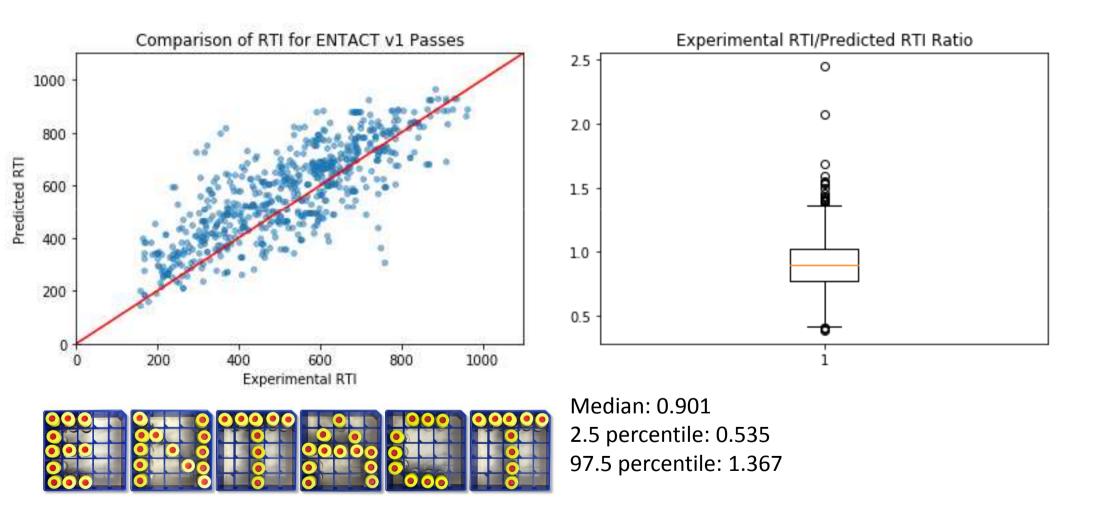

Click here to build the calibration curve ...

Click here to restart the current session ...

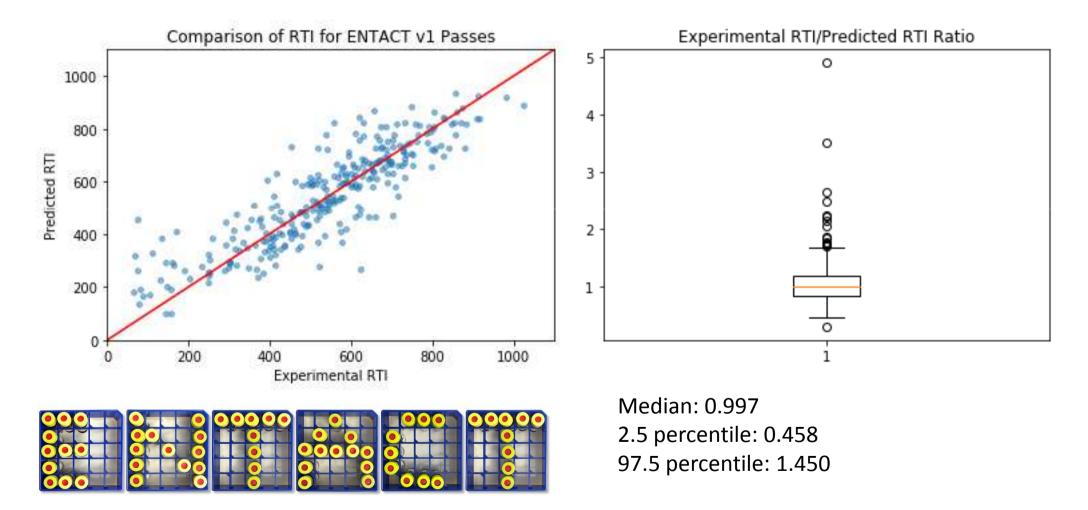
III Trace Analysis & Mass Spectrometry Group

III NORMAN Suspect list Exchange website

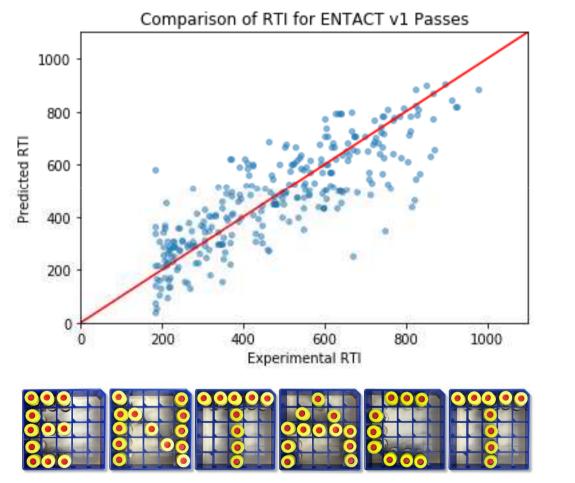

Recention	Ime indices for LC-HRMS	version 2.0.0).			
About	Chemical Conversion	Calibrants	Single compound	Batch mode	Comparison of Experimental RTIs
Select the	uncertainity measuremer	nt:			
OTrAMS	3				
Chemica	al space boundary				
Enter the S	SMILES of a compund her	e:			
NC(C)C(O)C1=CC=C(C)C=C1				
Enter the t	R for specific ESI mode				
5.12					
	C(C)C(O)C1=CC=C(C)C=(21			
Experiment					
The ESI se	lected: +ESI				
E	stimate RTI & its uncertaint	y			
	ntal RTI: 233.5 RTI: 157.43				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ntal tR: 5.12 min tR: 3.91 min				
		acconted for th	vic condidato (boyt)		
	ty: Exp. & Pred. tR are a	tine of Antife Statistics and the state	Provide the second s		
RTI vs tR	calibration curve: RTI=	62.9984 *(tR)	-89.0499 >>> (R^2=	=) 0.969	

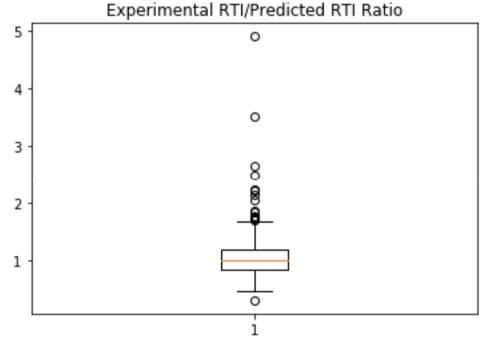

S <u>Non-Targeted Analysis</u> Collaborative Trial

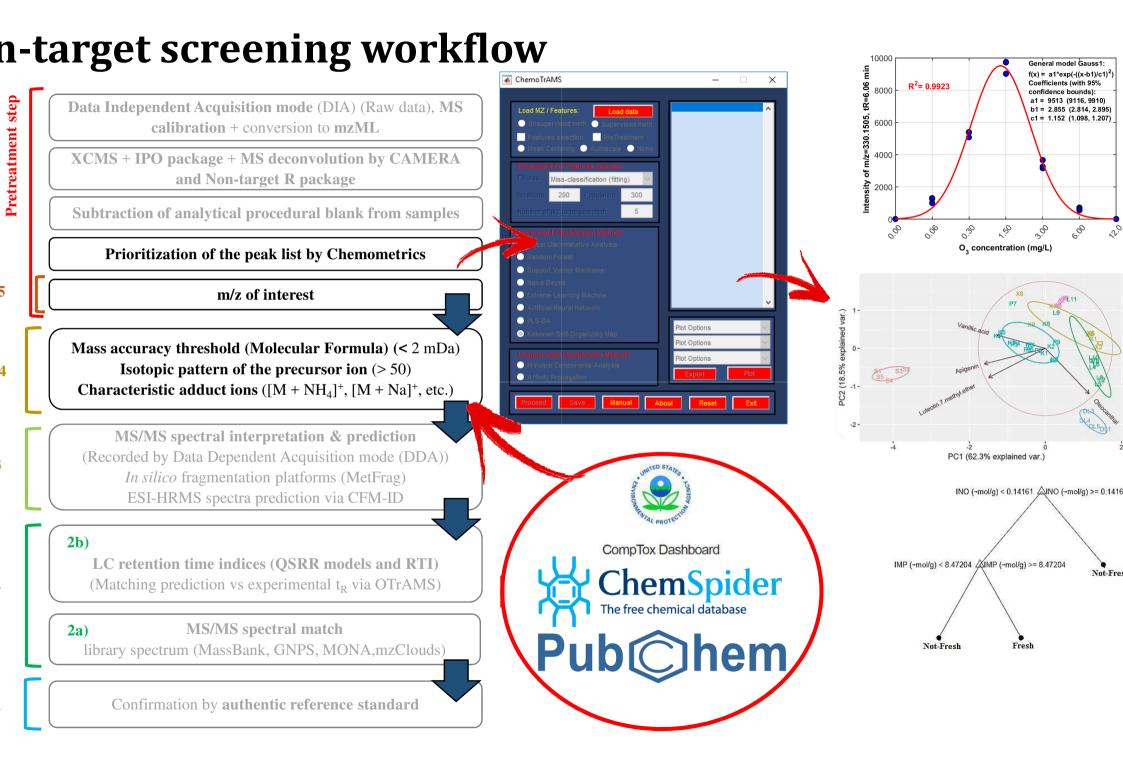
The Trial Samples:



Original MeOH Data (positive calibrants, +ESI compounds)




Updated ACN Data* (positive calibrants, all compounds)


hromatography changed to Acetonitrile/Water with formic acid for positive mode analysis.

Original MeOH Data (negative calibrants, -ESI compounds)

Median: 1.000 2.5 percentile: 0.588 97.5 percentile: 2.007

pplication of screening workflows

- Wastewater (influent & effluent)
- Sewage sludge
- Surface water
- Biota (fish, mussels)
- Sediment
- Soil

- isk assessment of emerging contaminants using in-house acute toxicity model (ACO-SVM QSTR model)
 - Incorporation of QSTR models in Ecotox module

ENVIRON SCI-PROC IMP, 2017, 19,

nvironmental Analysis – Projects completed

(2012-2015)

Transformation Products of Emerging Pollutants in the aquatic environment

(2012-2015)

Investigation of organic micropollutants' fate in wastewater treatment and study of their behavior during wastewater disposal to the aquatic environment

(2016-2017)

vironmental assessment of the use of restored Solid Waste Dump in Chios as shelter facility - UNHC QS 2013/39/EC target screening (**LC-QqQ/HRMS, GC-QqQ**)

EMBLAS Environmental Monitoring (UNDP, 2016-2018) in the Black Sea

- I. EQS 2013/39/EC target screening (LC-QqQ, GC-QqQ)
- II. Wide-scope target screening of (>2,100 chemicals, LC-QToFMS)
- III. Non-target screening (LC-QToFMS, GC-APCI-QToFMS, GC-EI-MS)

nvironmental Analysis – NEW Projects

Monitoring of drinking water reservoirs: Assessment of contamination of three lakes nearby Attica (EYDAP, 2018-2019)

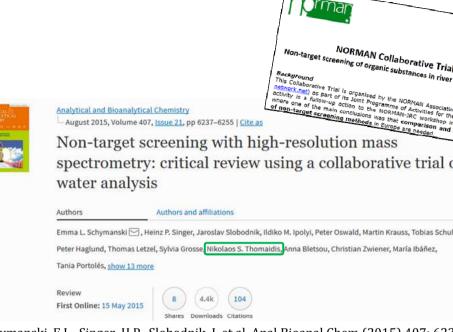
- **Monitoring of Asopos river basin**: Assessment of pollution/contamination and qualitative quantitative investigation of contamination levels and possible sources of pollution (Region of Attica, 2018-2020)
- EQS 2013/39/EC target screening (LC-QqQ, GC-QqQ)
- I. Wide-scope target screening of (>2,300 chemicals, LC-QToFMS, GC-APCI-QToFMS)
- II. Non-target screening (LC-QToFMS, GC-APCI-QToFMS, GC-EI-MS)

nvironmental Analysis – NEW Projects

"LIFE APEX - Systematic use of contaminant data from apex predators and their prey in chemicals management (2018-2022)"

Chemical contaminants in apex predators and prey samples Prioritization of chemicals for monitoring activities Time-trend analysis

de scope target analysis, Suspect & Non-target screening (LC-QToFMS & GC-APCI-QToFMS)


ollaborative Trials (CTs)

2014


I. NORMAN CT - "Non-target Screening of organic substances in river water"

2016

- **. NORMAN** CT **"Non-target** and **suspect** screening methods for organic substances in **indoor dust**"
- **25 institutes** (EI, UFZ, EAWAG, EMEA, INIRIS, **UoA** etc.) from **16 countries**

Schymanski, E.L., Singer, H.P., Slobodnik, J. et al. Anal Bioanal Chem (2015) 407: 623 https://doi.org/10.1007/s00216-015-8681-7

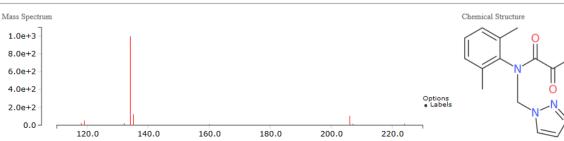
ontributions in MS databases

MassBank of North America

--- 💟 🏠 🔍 MoNa

1 -	📤 Downloads	📤 Upload	O Help							
	Welcome	to MoN	A!							
		tralized, collabora	tive database	of metabolite mass spectra,				rage and querying of mass spec ounds. MoNA currently contain		
				int improvements to server-s otice any major issues, feel t				e, and search speed. We are acti ue tracker linked below.	vely improving and addi	ng features, si
				Q Search Spectra	Lul Brows	se Spei	etra	A Issue Tracker		
						•				
	Fiehn HILIC I May 10, 2018						Nam	e	Avg. Score	Spectr
				ibrary has been uploaded, co	nsisting of	Ŧ	Q To	obias Schulze	****	2,867
	over 1,100 standards	acquired on both	Q Exactive	ma impieror.		Ŧ	Q SI	ephan Beisken	****	58
	Improved Spec	trum Browse	r			Ŧ	QN	ikolaos Thomaidis	****	1,492
	The spectrum brows			oved panel and table views.		4	QM	lartin Krauss	****	622
				rowsing spectra easier, the p the table view has fully cust		5	Q E	mma Schymanski	****	11,656
	columns.					6	QA	lex Svatos	*****	691
	MSP Exports U	Indated				7	QD	ejan Nikolic	*****	6
	August 31, 2017	-				8	QK	ourosh Hooshmand	*****	20
	metadata as possible	while remaining	fully compli-	a restructured to include as r ant with NIST MS Search fo		9	QM	legan Showalter	*****	3,290
	now compatible with	1 MS-DIAL v2.70				10	Q R	yo Taguchi	*****	2,563

Submitter High Scores

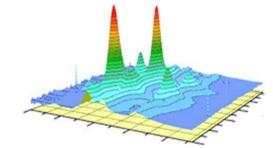

	Name	Avg. Score	Spectra
•	Q Tobias Schulze	****	2,867
 Ŧ	Q Stephan Beisken	****	58
Ŧ	Q Nikolaos Thomaidis	****	1,492

MassBank Record: AU206203

Home | Quick Search | Peak Search | Record Index | Statistics | Imprint/Data privacy MassBank ID:

Go

Metazachlor-OXA; LC-ESI-QTOF; MS2; CE: 30 eV; R=35000; [M+H]+



MassBank EU

Quick Search	Peak Search Record Index Statistics Imprint/Data priva	cy MassBank ID: Go
ributor	: <u>AAFC</u> (292)	Athens Univ. (1,492)
	CASMI2016 (622)	<u>Chubu Univ.</u> (2,563)
	Eawag Additional Specs (895)	Env Anal Chem, U Tuebingen (119)

Thank you very much for your attention!

NORMAN

Network of reference laboratories, research centres and organisations for monitoring of emerging environmenta substances

p://trams.chem.uoa.gr/