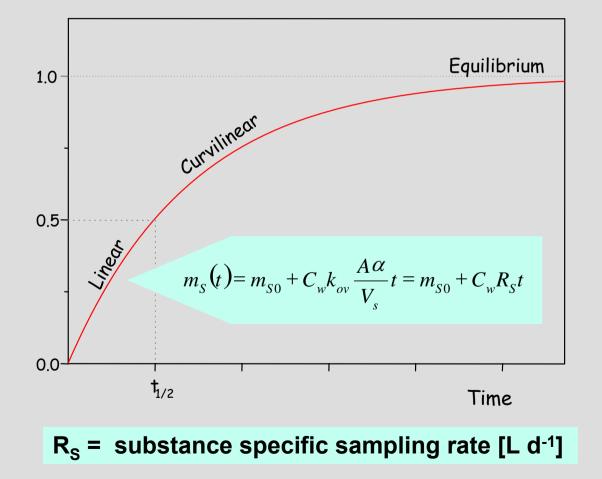

Passive sampling of pharmaceuticals and other polar emerging pollutants

Catherine Gonzalez, Ecole des Mines d'Alès, France Anne Togola, BRGM, France


Overview

- Brief description of theory and diffusion models
- Laboratory calibration (pharmaceutical products)
 - Chemcatcher
 - POCIS (Polar Organic Chemicals Integrative Sampler)
- Limits of laboratory calibration and translation to field conditions?
- Field applications
- Perspectives and new developments?

Principle of Passive Sampling

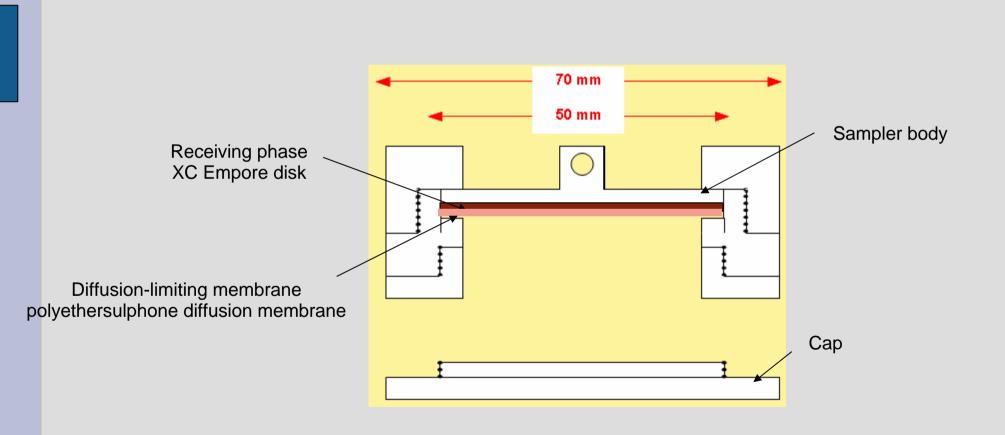
Uptake of a chemical by a passive sampler

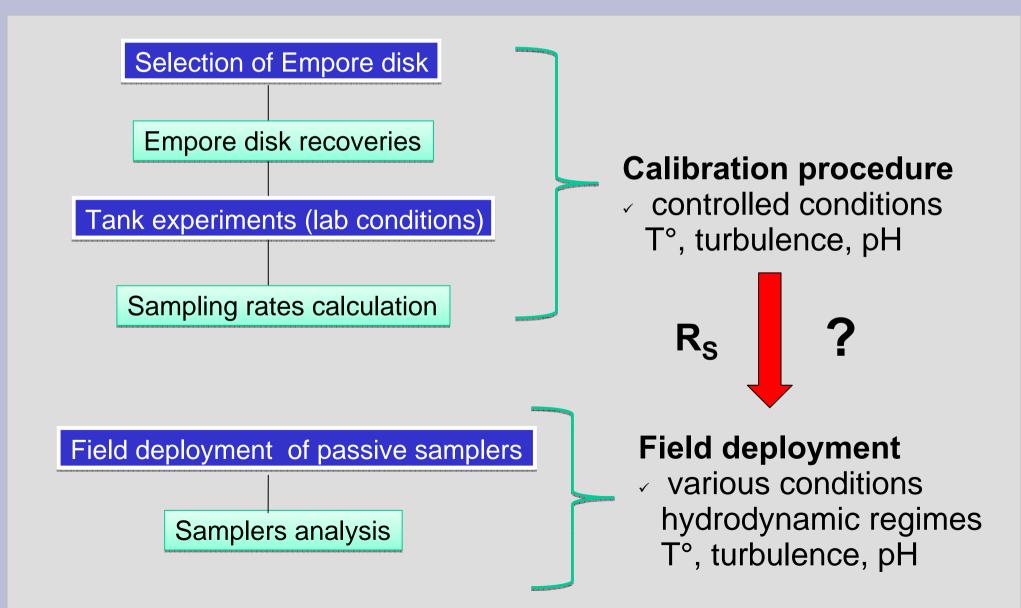
Estimating TWA concentration

- > TWA time weighted average
- In the initial uptake phase, integrative sampling occurs. The TWA aqueous concentration can be estimated
- The necessary sampling rate can be determined experimentally.

$$R_{s} = \frac{M_{s} - M_{0}}{C_{w}t} \longrightarrow C_{w} = \frac{M_{s} - M_{0}}{R_{s}t}$$

Chemcatcher[®] calibration Pharmaceutical compounds




Richard Greenwood (University of Portsmouth, UK)

Chemcatcher[®]

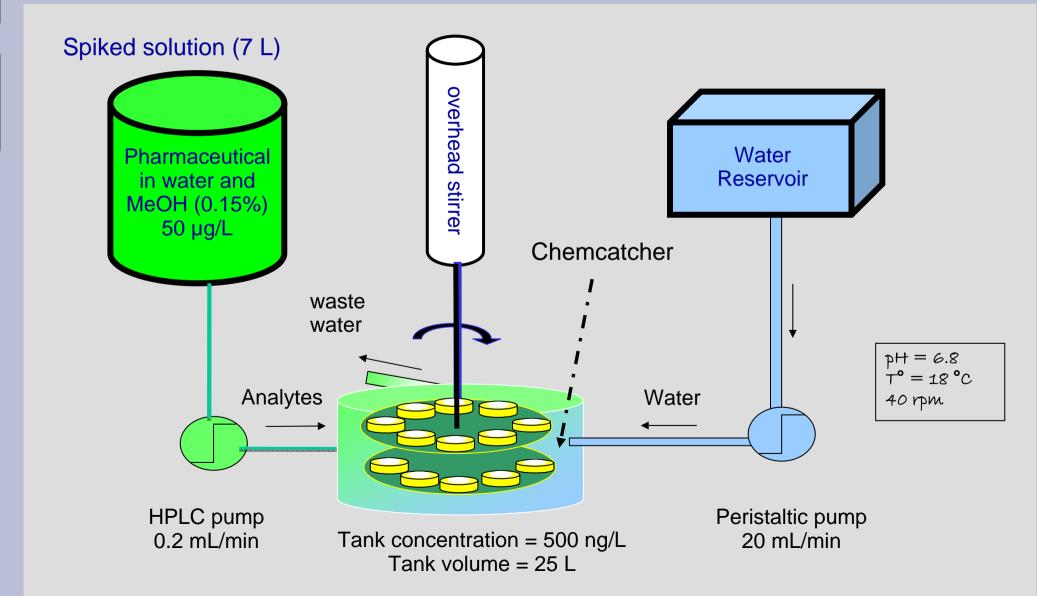
Estimating TWA concentration

Pharmaceutical compounds

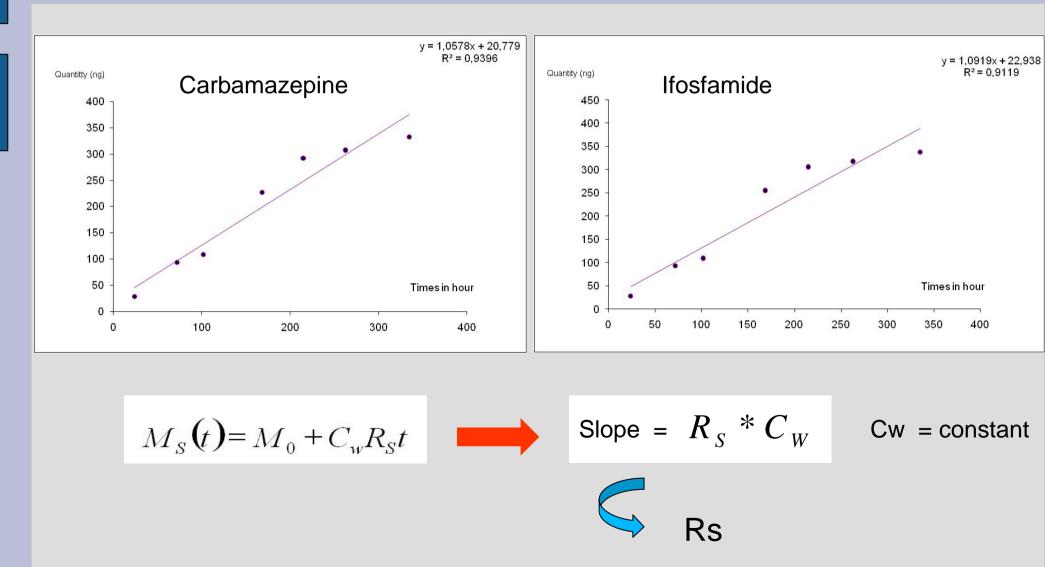
Compounds	рКа	Log Kow
	9,2	1,7
Pravastatine	7; 13,9	2,5
С23Н36О7	6,1 ; 8,6	2,3
•	4,2	3,9
	-	5,3
O munitive of the second secon	5,2	3,5
H O Martin	-	0,9
Ĭ J	13	2,4
O O H	6,2 ; 8,4	2,1
Pravastatin	4,7	2,2
Propranolol	9,4	3,5
Tamoxifen	9,2	6

- Polar, hydrophilic compounds
- Dissociable compounds
- Multiple pKa value

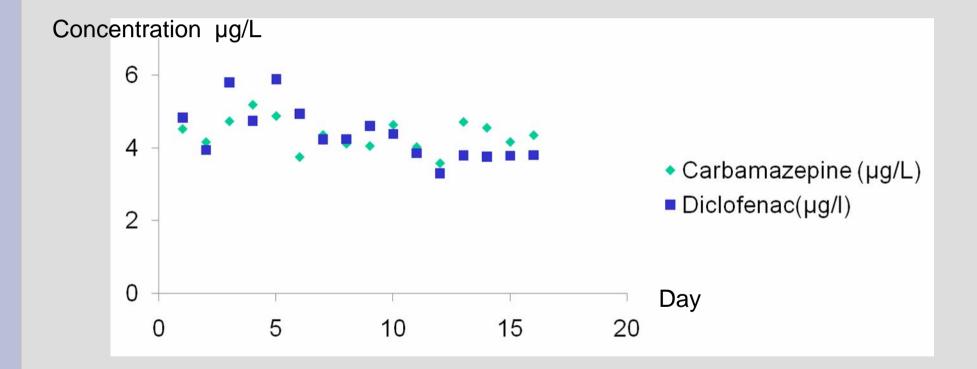
Selection of receiving phase?


SDB-XC Empore disk

- Spiked solution : 250 mL, 500ng/L
- Elution with 20 ml of MeOH
- Analysis by LC/MS/MS
- Internal standard calibraition (Carbamazepine D10)



Compounds	Spiked solution	Recovery %	Recovery % Tap	Recovery %
Compounds	(ng/l)	Deionized water	water	Natural water
Acebutolol	883	76	61	67
Carbamazepine	561	83	83	78
Ciprofloxacine	555	5	32	15
Diclofenac	554	100	92	100
Fenofibrate	542	28	22	37
Ibuprofene	565	100	100	100
lfosfamide	525	100	100	86
Lorazepam	546	82	78	66
Norfloxacine	611	1	20	9
Omeprazole	604	26	25	9
Pravastatine	549	45	90	37
Propranolol	580	83	51	54
Tamoxifen	595	17	15	60


Calibration of a passive sampler in a flow-through system

Sampling rate estimation R_s = [mL/day]

Concentration in the tank (2 weeks)



Concentration monitored by HPLC/DAD

Sampling rates RS = [mL/day]

Compounds	Tap water (pH = 8.2)	Deionized water (6.8)	
Dissociable compound	4	50	
	49	51	
Ciprofloxacine		low correlation	
Diclofenac		126	Rs: same order as polar compounds
Fenofibrate	2	14	 pesticides
Ibuprofen	63	84	 estrone
lfosfamide	53	51	
Lorazepam		50	
Dissociable compound	0.1	23	
		50	
Pravastatin	Concentration	low correlation	
Propranolol	not constant	67	
Tamoxifen		low correlation	

Effect of Chemcatcher[®] position in the tank

Higher position	Lower position	Diffusion of stock solution?
$r^2 = 0,909$	$r^2 = 0,784$	Position of the tube?
60 mL/day	50 mL/day	Solubility of compounds? Homogeneized solution?

Difficulties in applying R_s to natural samples

Comparison of spot sampling and Cw calculated from POCIS exposure

On lab Rs		EXP on Meuse river		EXP on Tank			
	Rs(L/day/g)	Cw from POCIS (ng/L)	Cw measured by spot sampling (ng/L)	Ratio	Ratio	Cw from POCIS (ng/L)	Cw measured by spot sampling (ng/L)
Cafeine	0,39	5145	109	4720%	452%	2863	633
Carbamazepine	1,99	107	118	91%	43%	318	736
Diazepam	1,40	72	8	903%	39%	325	828
Aspirin	0,04	1546	20,5	7539%	1368%	1775	130
Ibuprofen	0,48	388	25	1553%	49%	526	1063
Naproxen	0,72	108	16,5	652%	45%	332	738
Diclofenac	0,83	223	21,5	1038%	25%	242	987
Clenbuterol	0,40	87	3,5	2499%	191%	463	242
Ketoprofen	1,43	83	7	1182%	31%	180	578

Rs obained from lab experiment are very low in comparison with environmental conditions Effects of water flow?

Results from the SWIFT campaign, Togola A., Budzinski H. LPTC/ISM

Applications of passive samplers to water monitoring: case studies

A. Togola, BRGM

BRGM: Metrology, Monitoring and Analysis Division

The ultimate goal of this work is to enable state environmental agencies to alter their policies and to make it easier for managers and end users to choose passive samplers for monitoring surface water or groundwater.

Many policies are biased towards using classical spot sampling, and it may be necessary to undertake comparative studies of passive sampling devices and spot sampling techniques, or to compare passive sampling results with historical results from classical techniques.

General approaches

Masses accumulated by passive samplers

- No water concentration calculations
- No specific in lab Rs calibration

Determination of key pollutants
 Relative comparisons of sampling stations

TARGETED COMPOUNDS:

Pesticides and their main metabolites (60 substances) Pharmaceutical substances and metabolites (27 compounds)

PESTICIDES				PHARM	MACEUTICALS
Aldicarb	Atrazine	Dimethenamide	Hexazinon	Trimethoprim	Naproxen
Imazalil	DIA	Carbofuran	Bromacil	Furosemide	o desmethylnaproxen
Tetraconazole	DEA	Carbofuran 3 OH	Chlortoluron	Diclofenac	bezafibrate
Carbendazime	Simazine	Cyanazine	Propazine	Atenolol	Carbamazepine
Metobromuron	Metoxuron	Sebuthylazine	Monuron	Metoprolol	Alprazolam
Acetochlore	Metribuzine	Terbuthylazine	Tebutam	Propanolol	Oxazepam
Chloroxuron	Monolinuron	Fluazifop p buthyl	Diuron	Diazepam	Fenofibrate
Metamitron	Napropramide	DesethylTerbuthylazine	Linuron	Zolpidem	Fenofibric acid
Prochloraz	Propyzamide	Hydroxyterbuthylazine	Oxamyl	Fluoxetine	Ibuprofen
Terbutryne	Penconazole	Fenpropimorphe	Propanil	Clotrimazole	1-hydroxy ibuprofen
Flufenoxuron	Propiconazole	Imazamethabenz	Alachlore	Gemfibrozil	2-hydroxy ibuprofen
Fluzilazole	Tebuconazole	Isoproturon	Neburon	Lorazepam	Sulfamethoxazole
Fosthiazate	Metolachlor	Isoproturon -CH3	Methomyl	Ketoprofen	Paracetamol
Hexaconazole	Desmetryne	Isoproturon -2CH3	Asulam		Bromazepam
Metazachlore	Prometryne	Methabenzthiazuron	Bitertanol		
		Difenoconazole	Ametrvne		

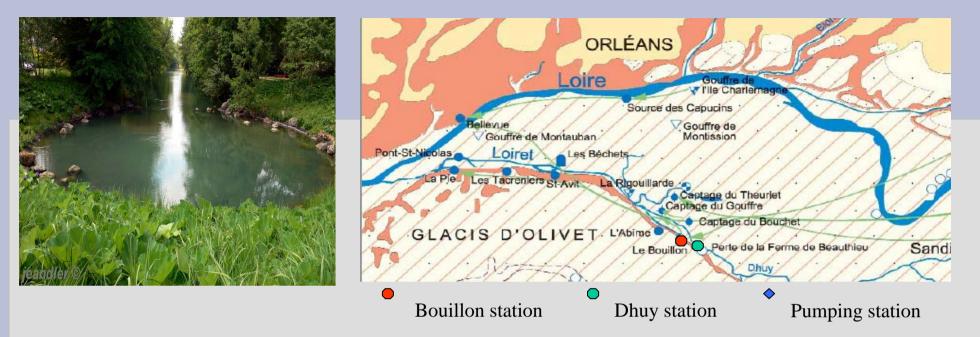
General approaches

Passive samplers used:

POCIS with pharmaceutical configuration (HLB sorbent) Comparison of regular size (disk) and groundwater format (4 x 30 cm long, 200mg of sorbent) adapted to introduction in piezometer from 6 to 10 cm , ID)

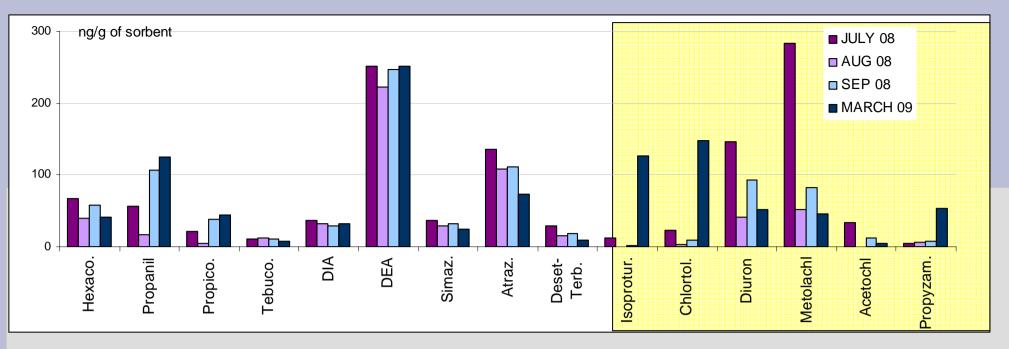
Exposure time:

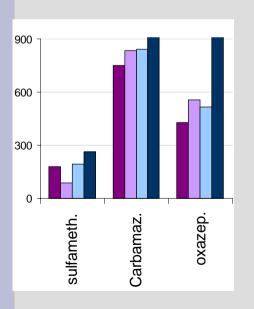
Depends on sampling sites (15 / 30 days) Spot sampling at the beginning and at the end of passive sampler exposure


PS extraction:

PS are cleaned on site and extracted with 10 mL of methanol Extracts are analyzed using UPLC/MS/MS and GC/MS/MS systems depending on compounds;

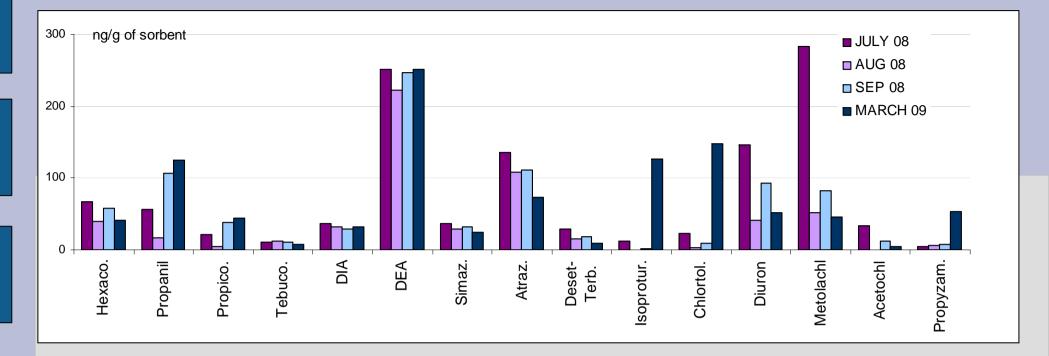
CASE STUDY: Val de Loire hydrological system

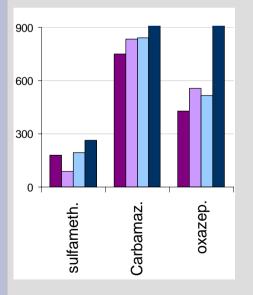

Context of the study


First case study (still under investigation) involves monthly measurements at the Bouillon station, located in the Loire river basin.

This station is located between the Loire river and several pumping stations for fresh water supply in the Dhuy river. Dhuy is an affluent of the Loire river and Bouillon is a resurgence of the Loire river, and is not connected to the Dhuy under normal circumstances.

But groundwater circulations in this area are not yet fully understood. There is an inversac phenomenon in the Bouillon spring, and this can affect the quality of water in the Dhuy river and hence water quality in the pumping stations.




A first campaign : 3 months in summer 08

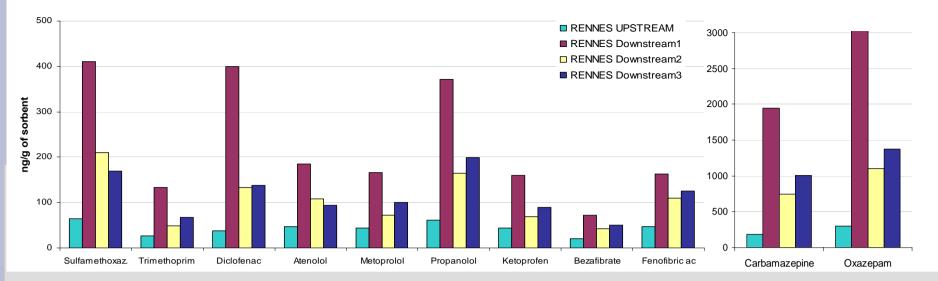
 « historical pollutants » Atrazine and metabolites DIA and DEA : relative constant level, despite hydrological variations (flood in July in the Val de Loire river basin).
 Same results for pharmaceuticals, highlighting local contamination by WWTP located in the watershed hydrogeological connections are not yet elucidated.

For other compounds (metolachlor, diuron) local agricultural spreading coupled with hydrogeological changes impact water quality in the Bouillon spring, independently of the pesticide contamination of the Loire river (not shown).

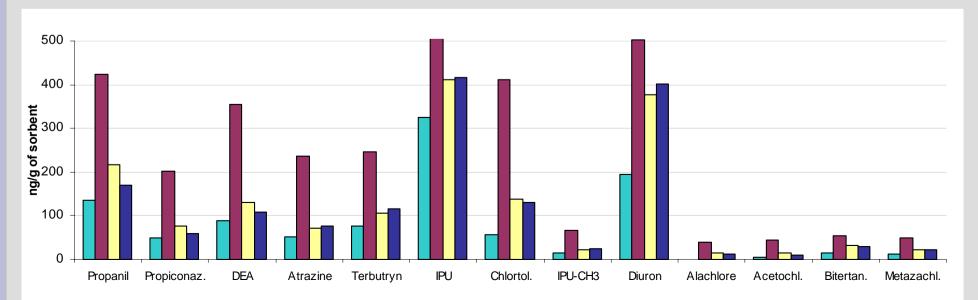
A new campaign started in March 09 will connect agricultural practices, hydrological phenomenon and contamination levels in the different stations equiped with passive samplers (Loire, Dhuy and Bouillon).

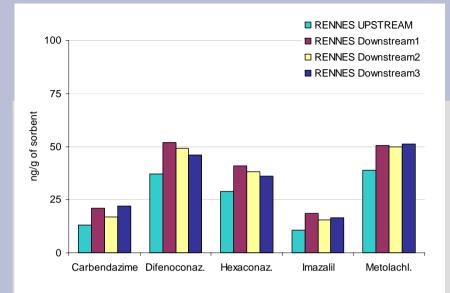
With classical measurements, only Atrazine, DEA, DIA and sometimes diuron, isoproturon, carbamazepine and oxazepam have been detected. PS allows more than 25 extra compounds to be detected, and this helps us to understand the observed phenomena: such as local spreading and inputs of WWTP.

CASE STUDY: VILAINE River, WWTP influence



Context of the study


CASE STUDY: Water quality in the Vilaine river


Second case studies (still under investigation) is the longitudinal measurements of the Vilaine river, with 4 station located upstream of a WWTP (300 000 EqH) for the first one and 500 m, 2 km and 5 km downstream for the others. The aim is to identify "4 or 5 key pollutants" than can allow a qualitative monitoring of the water quality in this river. Degradation of pollutants can also be monitored to determine the impact area of the WWTP effluent, that can affect diverse uses of the river (nautical leisure centre, protected natural area) located in the downstream part of the river.

Main part of the pollution comes from WWTP effluent (Vilaine downstream 1), more important for pharmaceuticals than for pesticides. Pesticide contamination comes from the both sources.

Degradation phenomena are highlighted by occurrence of IPU-CH3, or DEA. These results will be compared with summer measurements.

For some pesticides, the impact of WWTP effluent are completely negligible. Vilaine pollution is mainly due to agricultural watersheld.

FIRST RESULTS ATTEMPTED FOR THIS CASE STUDY:

More than 36 compounds have been detected in this study compared with 15 by spot sampling; Helpful for identification of pollution sources Better under understanding of degradation phenomena occurring Potential use for specific measurements in area with high vulnerability.

Conclusions and perspectives

Factors affecting the calibration (laboratory conditions)

- Properties of pharmaceutical compounds
 - pKa, Log Kow, solubility, degradation?
 - Investigation of specific receiving phases
- > T°, turbulence, pH, matrix effect
 - Use of PRC: rate of PRC loss during an exposure is related to the target compound uptake
- Chemcatcher[®] and POCIS
 - Accumulation of PPs is based on adsorption and not on partition process
 - Under these circumstances it is difficult to use performance reference compounds

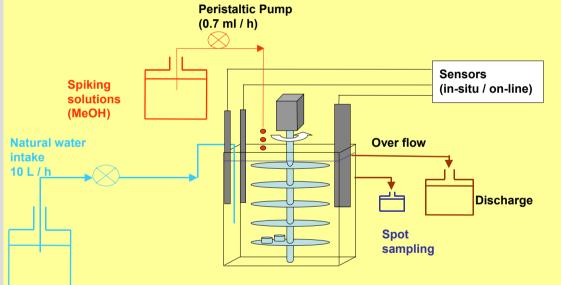
Translation to field applications?

- Factors affecting field applications
 - water velocity/turbulence/hydrodynamic regimes
 - Flow rate (river)
 - Temperature
 - Biofouling
 - Matrix effects (SPM, humic substances?)
- Determination of Rs?
 - In-situ validation?
 - Spot /passive sampling analysis
 - Use of same principal as PRC?
 - Measure of "tracer/labelled compound" loss rates during calibration studies and field exposures

How to simulate environmental conditions?

- Artificial channel
 - Flow rate and the concentration could be monitored
 - Calibration model? Rs determination?
- Deployment of passive samplers in reference sites
 - Pollutants concentration are well known
 - Matrix effect well characterized (SPM, DOC, pH,...)
 - Comparison of different passive samplers (same conditions, same period of time,...)
- Tank experiment with natural water (cf SWIFT)

Reference sites?


Pilot site : WWTP + lagoon system

Design of the tank in continuous mode SWIFT project : UoP, BRGM, RIZA(Eijsden)

Water reservoir

Hydrodynamic regime

Artificial channel

Factors affecting the use of PS as new tool for monitoring

What are regulatory barriers to using passive samplers to assess ground water contamination ?

- Environmental Quality Levels determination
- What is really measured by PS (which fractions?)
- Sampling frequency adopted ?

Acknowledgments

Ecole des Mines d'Alès (Fr) :

Sylvie Spinelli, Clémence Coetsier, Simon Gonzalez

BRGM (Fr):

Charlotte Coureau, Sébastien Bristeau, Laurence Amalric

Financial support: Loire Brittany Water Agency, Loiret department

