Screening of consumer and industrial chemicals and pesticides as priority substances in Finnish aquatic environments

Jaakko Mannio, Katri Slimes, Kirsti Kalevi, Jari Nuutinen, Pirjo Sainio, Kirsti Erkomaan, Jari Heinonen, Jukka Mehtonen & Susan Londesborough
Finnish Environment Institute

Leena Welling & Keijo Mäntykoski, Univ. of Jyväskylä, Ambiotica laboratory
Panu Rantakokko, National Public Health Institute, Kuopio
Anri Aallonen, Lahti Science and Business park, Research laboratory

4th NORMAN workshop
Lyon 17-18 March, 2008
Objectives of the screening

- Identify EU/WFD prioritized and nationally selected organic pollutants in aquatic environments near sources of discharge
- Provide information to source identification – but not single pollution sources (impact monitoring, compliance checking => enterprises)

- To develop best practices, analytical methods and cooperation between laboratories
- To identify WFD substances which should enter the national monitoring networks
31.3.2008

SUBSTANCES
• risk based selection
• EU PS + National

PROPERTIES
• water solubility
• logK_{sed-water}
• Bio Conc. Factor

PRESSURE
• municipalities
• SME industry
• large factories
• agriculture

MATRICES
• STP sludge
• STP effluent
 • surface water
 • sediment
 • fish
• stream water
• sediment

SITES
• number of samples
• pooling?
• replicates?
• number of sites?
Project: VESKA 1
Industrial & household chemicals

Map of Finland with locations marked:
- Sewage treatment plant
- Sediment & water
- Fish

VESKA 1
Lahti, Porvoonjoki

Sewage treatment plant
population > 100 000

sediment + surface water
3 km from discharge
VESKA 1
Tampere, Viinikanlahti

Sediment + surface water
Near effluent pipe <200 m

Sewage treatment plant
Treatment plant effluent indicates, what might be found in surface water

- Max observation of 12 substances not even 5 percent of the EQS\textsubscript{water} (!)
- 10 substances max 5 – 100 % of EQS\textsubscript{water}
- 6 substances max > EQS\textsubscript{water}

- MBT, DBT, DEHP, 4-tert-octylphenol, nonylphenylethoxylate, 4-n-nonylphenol
Surface water; few detected

- Very few substances even detected: chloroform, 1,2-dichlorethene < 1 µg/l -range
- HCB, lindane & α-HCH, HCBD in < 1 ng/l range

- Nonylphenyl ethoxylates (precursor to NP) found (0.4 µg/l) in the range of EQS proposal (0.3 µg/l) for NP
- NP/OP not detected

- Phthalates and PAHs found occasionally in 2006-2007 pilot monitoring
Mainly TBT exceed the estimated EQS-values in sediment

Max observed / EQS_{sediment}
SYKE TBT and TPhT in FISH 2003, 2005 (mostly pike)

BACKGROUND AREAS

LAKES, RIVERS

COASTAL

WFD calc. Quality standard (EQS) 15 µg / kg

North -> South
TBT bioaccumulates, but TPhT bioaccumulates much stronger

If sediment clearly TBT contaminated, fish *might* be contaminated

If sediment *slightly* TPhT contaminated, fish are contaminated
EQS = 0.2 ng/L corresponding to c.a. 0.1 kg/a emission

TBT Modeling at catchment/estuary scale
VESKA 2: Pesticides Regional screening 2005

- 120 water samples; over 100 pesticides analysed – 46 found

35 agricultural rivers

- Statistical sample, 2 sampling occasions
 - selection based on watershed number
 - sediment sample from most sites
 - field percentage over 25

- 5 reference areas, field percentage < 10
- 6 major rivers, monthly sampling
Many substances found, but not much

<table>
<thead>
<tr>
<th>Substances</th>
<th>Detected Amount (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCPA</td>
<td>8.8</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>4.40</td>
</tr>
<tr>
<td>Mecoprop</td>
<td>1.60</td>
</tr>
<tr>
<td>Tralkoxydim</td>
<td>0.10</td>
</tr>
<tr>
<td>Bentazone</td>
<td>0.15</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>0.14</td>
</tr>
<tr>
<td>Desaminometamitron</td>
<td>0.56</td>
</tr>
<tr>
<td>Simazine</td>
<td>0.02</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>0.31</td>
</tr>
<tr>
<td>Thifensulfuronmethyl</td>
<td>0.04</td>
</tr>
<tr>
<td>Tribenuronmethyl</td>
<td>0.08</td>
</tr>
<tr>
<td>Linuron</td>
<td>0.09</td>
</tr>
<tr>
<td>Atrazine</td>
<td>0.01</td>
</tr>
<tr>
<td>BAM</td>
<td>0.07</td>
</tr>
<tr>
<td>Metamitron</td>
<td>0.26</td>
</tr>
<tr>
<td>Azoxyostrobin</td>
<td>0.03</td>
</tr>
<tr>
<td>Dimethomorph</td>
<td>0.12</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>0.01</td>
</tr>
<tr>
<td>Fluroxypyr</td>
<td>0.35</td>
</tr>
<tr>
<td>Flutolanil</td>
<td>0.24</td>
</tr>
<tr>
<td>Pirimicarb</td>
<td>0.02</td>
</tr>
<tr>
<td>Triflusulfuron-methyl</td>
<td>0.16</td>
</tr>
<tr>
<td>Endosulfansulphate</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- Low concentration (<EQS)
- Potentially harmful concentration (> EQS)
- No reference concentration to compare
VESKA analyses and risks

<table>
<thead>
<tr>
<th>Compound Group</th>
<th>STP effluent</th>
<th>Surface water</th>
<th>Sludge</th>
<th>Sediment</th>
<th>Pike</th>
<th>PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organotins</td>
<td>15</td>
<td></td>
<td>6</td>
<td>14</td>
<td>28</td>
<td>found constantly, observations > EOS (solid)</td>
</tr>
<tr>
<td>Pesticides (mostly phenoxyherbicides)</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>detected in rivermouths, monitoring to be targeted</td>
</tr>
<tr>
<td>PBDE</td>
<td></td>
<td>10</td>
<td>5</td>
<td>30</td>
<td></td>
<td>water analysis difficult, diffuse sources</td>
</tr>
<tr>
<td>PAHs</td>
<td>40</td>
<td>20</td>
<td>14</td>
<td>10</td>
<td></td>
<td>water analysis difficult, diffuse sources</td>
</tr>
<tr>
<td>NP, NPE, OP</td>
<td>20</td>
<td>70</td>
<td>20</td>
<td></td>
<td></td>
<td>difficult to analyse, diffuse sources</td>
</tr>
<tr>
<td>Phthalates</td>
<td>10</td>
<td>40</td>
<td>6</td>
<td>14</td>
<td>10</td>
<td>easily contaminated, diffuse sources</td>
</tr>
<tr>
<td>VOC: chlor & aromatic</td>
<td>40</td>
<td>70</td>
<td></td>
<td>14</td>
<td>10</td>
<td>have to be analysed rapidly</td>
</tr>
<tr>
<td>HCB, HCHt, HCBd</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>14</td>
<td>monit</td>
<td>persistent, banned, still found</td>
</tr>
<tr>
<td>SCCP</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>difficult to quantify, few analyses</td>
</tr>
<tr>
<td>Chlorophenols</td>
<td>20</td>
<td>30</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCMTB</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronopol & resorcinol</td>
<td>24</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- **Detected, Risk**: 30 sample number
- **Unsure**: not analysed
- **Detected, no risk**: not analysed, WFD requirement, but DL > EOS
- **Not detected**:
Screening Lessons

- Organotin compounds found in all matrices => need for research, monitoring and management
- Many pesticides and few industrial chemicals (NP/NPE) are found in surface water => need for monitoring
- For some substances difficult to assess the need for monitoring: PAH, PBDE, phthalates, chlorobenzenes

- Analytical methods and equipment fairly well established – in theory, but practice lacking
- Simultaneous screening of several substance groups suitable for pesticides but not for industrial & household chemicals (several, poorly known sources)
- Natural conditions in Finland (population/water volume, lake-richness) would favour sediment and biota over water, in monitoring industrial & household chemicals
River Basin District Surveillance Monitoring for WFD reporting

Industrial & household chemicals:
- NP/NPEO, OP
- PAHs
- Phthalates (DEHP, DBP, BBP)
- Trace metals
- 10 sites
+ 6 sites only trace metals

Water phase monthly sampling
May-07 – April-08
River Basin District Surveillance Monitoring for WFD reporting

Water phase monthly sampling
May-07 – April-08

Pesticides:
>100 substances / sample
- rivers 12 samples / yr
Sites in three year rotation
+ 3 intensive rivers every year
=> max 9 rivers per year
Fish & sediment monitoring

Frequency: 2-6 yr, site specific
2006: pooled herring, vendace
2007: individual pikes (+pooled perch 2 lakes)

- Hg, Cd, Pb + other trace metals
- OCPs, PCB (12+12Copl), PCDD/F (part)
- new: PBDE, organotins

8 large lakes
2 headwater lakes
3 major rivers
7 coastal areas
2 sedimentation traps

Sediments: all sites, in 4-5/yr time
Specimen banking

Prepared, homogenized aquatic & terrestrial tissue samples stored in liquid nitrogen –196 °C

photos: Matti Verta
Prioritisation of substances and matrices

EU:
- directives
 - water, air, soil, sludge, IPPC
 - REACH
 - Env Health Strategy
 - RA & RM

International Conventions
- UNEP
- CLRTAP
- OSPAR/HELCOM
- AMAP

National Priorities
- “own substances”
- meaningful participation in EU & int. monitoring

Emission/pressure Information
- Registers/data banks

Decision on Monitoring: Screening, Threshold values (EQS), trends, RA, research, modelling
Emerging substances monitoring in future

- Better identification of sources
- Monitoring and screening activities should be internationally harmonized and optimized – cooperation!
- Importance of concentration in sediments (& soils) and biota must be understood better
 - => realistic Environmental Quality Standards
- QA/QC in the whole information chain
 - Planning, manuals, sampling, storage, pretreatment,
 - Analyses / validation, PT schemes
 - Data storage, reporting…
- Chemical monitoring combined to biological (effects) monitoring
 - Combined effects of several compounds likely
- Link to risk management and risk research
 - no “monitoring for monitoring” => think: why, what, where, how….
Thank You!