integrated chemical and biological monitoring of the marine environment – the OSPAR approach

Ketil Hylland

Department of Biology, University of Oslo
Norwegian Institute for Water Research (NIVA)
acknowledgement

Norwegian JAMP: Norman Green, Anders Ruus

German monitoring programmes: Volkert Dethlefsen, Thomas Lang, Werner Wosniok

UK monitoring programmes: John Thain and co-workers

ICES/OSPAR WKIMON working groups: Ian Davies, John Thain, Colin Moffatt, Robin Law, Dick Vethaak, Thomas Lang, Kevin Thomas and other participants

ICES working group on biological effects of contaminants (WGBEC)
issues

- contaminants in marine ecosystems
- chemical analyses can not be used surrogates for effects
- limitations
 - environmental chemistry
 - biological effects
- integration?
 - a range of analyses in the same individual (JAMP, NO)
 - co-ordinated sampling (EFFSTAT, DE)
 - co-ordinated sampling, analyses and assessment (fullmonti, UK; WKIMON)
- quality assurance

find what you look for ..
bioavailability, etc
specificity
natural processes
OSPAR agreement

To take all possible steps to prevent and eliminate pollution and to take the necessary measures to protect the maritime area against adverse effects of human activities so as to safeguard human health and to conserve marine ecosystems and, when practicable, restore marine areas which have been adversely affected.
objectives

- spatial monitoring
- temporal monitoring
- novel substances
same individual

● general factors
 ● year, station
● physiology
 ● sex, maturation, length (size), condition, LSI, fat
● contaminants
 ● OH-pyrene (bile)
 ● OCs: HCB, PCB-153, mono-ortho PCBs, p.p’-DDE (liver)
 ● metals: Cd, Cu, Pb, Zn (liver); Hg (muscle)
● effects
 ● cytochrome P4501A activity (EROD)
 ● metallothionein, ALA-D

● multiple regression with effect as dependent factor
<table>
<thead>
<tr>
<th>effect</th>
<th>DF</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>1</td>
<td>56.1</td>
<td><0.000001</td>
</tr>
<tr>
<td>year</td>
<td>4</td>
<td>5.8</td>
<td>0.00001</td>
</tr>
<tr>
<td>station</td>
<td>7</td>
<td>24.5</td>
<td><0.000001</td>
</tr>
<tr>
<td>year*station</td>
<td>21</td>
<td>4.4</td>
<td><0.000001</td>
</tr>
<tr>
<td>LSI</td>
<td>1</td>
<td>7.0</td>
<td>0.008</td>
</tr>
<tr>
<td>HCB</td>
<td>1</td>
<td>74.5</td>
<td><0.000001</td>
</tr>
<tr>
<td>Hg (muscle)</td>
<td>1</td>
<td>29.1</td>
<td><0.000001</td>
</tr>
<tr>
<td>error</td>
<td>640</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

adjusted $R^2 : 0.41$. $p < 0.001$
integrated assessment

- appropriate compartments and methods
- develop criteria for each parameter/endpoint
- weigh and combine results for methods
- simplify results to generate indicators (traffic light)
fullmonti

- UK monitoring data
- three components
 - chemistry
 - individual biological effects
 - benthic community
- traffic light indicators for UK coastal areas and estuaries
<table>
<thead>
<tr>
<th>Location</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amble</td>
<td>5.0</td>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Tyne Hebburn</td>
<td>20.5</td>
<td>12.7</td>
<td>23.0</td>
<td>15.2</td>
<td>18.5</td>
</tr>
<tr>
<td>Tyne Ferry</td>
<td>18.5</td>
<td>16.7</td>
<td>25.3</td>
<td>11.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Off Tyne</td>
<td>8.0</td>
<td>10.1</td>
<td>16.9</td>
<td>5.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Off Tees</td>
<td>4.3</td>
<td>8.7</td>
<td>5.2</td>
<td>6.4</td>
<td>10.0</td>
</tr>
<tr>
<td>Firth of Forth</td>
<td>7.8</td>
<td>12.5</td>
<td>8.4</td>
<td>4.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Clyde CMT 5</td>
<td>7.3</td>
<td>20.1</td>
<td>7.3</td>
<td>19.3</td>
<td>7.3</td>
</tr>
<tr>
<td>Clyde CMT 7</td>
<td>3.8</td>
<td>24.1</td>
<td>3.5</td>
<td>24.1</td>
<td>5.3</td>
</tr>
<tr>
<td>Irvine Bay</td>
<td>5.3</td>
<td>14.4</td>
<td>7.3</td>
<td>14.4</td>
<td>6.0</td>
</tr>
<tr>
<td>Loch Linnie</td>
<td>12.3</td>
<td>3.8</td>
<td>14.0</td>
<td>3.8</td>
<td>15.5</td>
</tr>
<tr>
<td>Liverpool Bay</td>
<td>9.0</td>
<td>8.0</td>
<td>10.0</td>
<td>10.1</td>
<td>14.4</td>
</tr>
<tr>
<td>Isle of Man</td>
<td>5.3</td>
<td>8.7</td>
<td>16.9</td>
<td>6.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Belfast Lough</td>
<td>3.3</td>
<td>12.5</td>
<td>3.8</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>Belfast Lough</td>
<td>7.0</td>
<td>10.0</td>
<td>4.3</td>
<td>17.5</td>
<td>10.0</td>
</tr>
<tr>
<td>Cardigan Bay</td>
<td>4.8</td>
<td>10.4</td>
<td>0.0</td>
<td>8.8</td>
<td>1.9</td>
</tr>
<tr>
<td>Tees Philips Buoy</td>
<td>15.0</td>
<td>11.5</td>
<td>0.0</td>
<td>13.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Tees Bramlets</td>
<td>20.5</td>
<td>14.5</td>
<td>0.0</td>
<td>15.5</td>
<td>16.0</td>
</tr>
<tr>
<td>Tees No 23 Buoy</td>
<td>16.0</td>
<td>14.4</td>
<td>17.3</td>
<td>15.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>
ECOSYSTEM integration

WATER
- water chemistry
- water extract passive samplers (bioassays)
- hydrography
- bioassays
- other parameters

SEDIMENT
- sediment chemistry
- sediment characteristics
- sediment bioassays
- benthic ecology

BIOTA
- tissue chemistry
- fish biological effects
- mussel biological effects
- gastropod biological effects (inter-/imposex)

OSPAR WKIMON
tissue chemistry

whole organism response

Cd, Pb, Hg
Cu, Zn

scope for growth

Cd, Pb, Hg
Cu, Zn

condition index

PCBs

stress on stress

PAHs

growth

BFRs

histopathology

organotins

lysosomal stability

fluorinated compounds

micronucleus formation

AChE

MXR

Comet assay

metallothionein
FISH

tissue chemistry
 Cd, Hg, Pb
 Cu, Zn
 organochlorines
 BFRs
 fluorinated compounds

whole organism response
 condition index, LSI, GSI
 reproductive success

subcellular response
 liver histopathology
 liver microscopic neoplasms
 external fish disease
 intersex

PAH metabolites
 EROD/CYP1A
 vitellogenin
 lysosomal stability
 DNA adducts
 AChE
 Comet assay
 metallothionein
 ALA-D
<table>
<thead>
<tr>
<th>Location</th>
<th>Fish</th>
<th>Invertebrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish Med coast</td>
<td></td>
<td>mussels, sediment, gastropod</td>
</tr>
<tr>
<td>Wadden See</td>
<td>flounder</td>
<td>mussels, sediment, gastropod</td>
</tr>
<tr>
<td>southern England</td>
<td>flounder</td>
<td>mussels, sediment, gastropod</td>
</tr>
<tr>
<td>Iceland</td>
<td>flounder?</td>
<td>mussels, gastropod, sediment</td>
</tr>
<tr>
<td>Seine Bay</td>
<td>dab</td>
<td>flounder, mussel, gastropod</td>
</tr>
<tr>
<td>Offshore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German Bight (JAMP)</td>
<td></td>
<td>dab, sediment, (whelk)</td>
</tr>
<tr>
<td>Dogger Bank</td>
<td></td>
<td>dab, sediment (haddock, whelk)</td>
</tr>
<tr>
<td>off Firth of Forth</td>
<td></td>
<td>dab, haddock, sediment, (whelk)</td>
</tr>
<tr>
<td>Ekofisk</td>
<td></td>
<td>dab, haddock, sediment, (whelk)</td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td>dab, haddock, sediment, (whelk)</td>
</tr>
<tr>
<td>Baltic</td>
<td></td>
<td>dab, flounder, sediment, (whelk)</td>
</tr>
<tr>
<td>Gradient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firth of Forth</td>
<td>flounder</td>
<td>mussel, gastropod</td>
</tr>
</tbody>
</table>
conclusions

- assessment of environmental impacts of contaminants require both chemical analyses and biological effects
- co-ordinated analyses in same individual will not provide all required information
- temporal and spatial co-ordination is essential, but not sufficient
- an integrated programme requires water, sediment and biota components
- assessment frameworks need to be transparent and include relevant ecosystem components
- lack of correspondence between effects and contaminant concentrations may indicate the presence of unknowns
- quality assurance is critical
challenges

- integrated assessment framework
- assess contaminant impacts in relation to other environmental stressors (fisheries, eutrophication, habitat change, etc)
- national compliance, competence and resources
- quality assurance