A proteomics strategy for protein expression profiling and biomarker discovery in wildlife: effects of endocrine disrupting chemicals in frog (Xenopus laevis)

Anders Goksøyr1,2, Christina C Tolfsen1, Anneli Bohne Kjersem1, Tina Søfteland, Torbjørn Midtun1, Ralph Urbatzka, Werner Kloas3, & Bjørn Einar Grøsvik1,4

1Department of Molecular Biology, University of Bergen, Bergen, Norway
2Biosense Laboratories AS, Bergen, Norway
3Department of Inland Fisheries, Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
4Institute of Marine Research, Bergen, Norway
Proteomics = the study of all proteins expressed by the genome of a given cell or tissue of an organism.
EASYRING biomarker discovery strategy

(EASYRING - Environmental Agent Susceptibility Assessment Utilizing Existing and Novel Biomarkers as Rapid Non Invasive Testing Methods) - EU FP5 project associated with the CREDO cluster (2003-2005)

Test species
- Common carp (Cyprinus carpio)
- African clawed frog (Xenopus laevis)

Aquaria/ cell culture exposures
- EE2
- MDHT
- TAM
- FLU
- + Lambro river water (Italy)

Sampling
- Mucus
- Liver
- Plasma
- Hepatocytes
- MVLN cells
- Culture medium

Ab production and assay development
Biomarker candidates
2-DE/MS
Carp and Xenopus exposures

Carp: 4 doses, 2 weeks, continuous
Xenopus: 1 dose (10^{-8}M), 4 weeks, semi-static
Mini 2-DE of X. laevis plasma

Vitellogenin Serotransferrin precursor

Control

10^-8 M MDHT

10^-8 M EE2

Complement C3 Actin

Immunoglobulin light chain

Serotransferrin precursor

Albumin

Estrogen regulated protein Ep45

Unidentified

5 µg protein, IPG pH 3-10 NL

250 kDa
150 kDa
100 kDa
75 kDa
37 kDa
25 kDa
<table>
<thead>
<tr>
<th>Spot</th>
<th>Protein name (Family)</th>
<th>Accession</th>
<th>Theor. Mr/pI</th>
<th>Score</th>
<th>Expect</th>
<th>Seq. Cov. (%)</th>
<th>Queries matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carboxymethyl-glutamate synthase 1 and</td>
<td>ABA01549</td>
<td>16355.5/5.98</td>
<td>198</td>
<td>2.2e-10</td>
<td>28</td>
<td>100(40)</td>
</tr>
<tr>
<td></td>
<td>Retinal X receptor beta</td>
<td>AAE99003</td>
<td>30023.8/5.55</td>
<td>63</td>
<td>0.0007</td>
<td>23</td>
<td>100(39)</td>
</tr>
<tr>
<td>2</td>
<td>Carboxymethyl-glutamate synthase 1</td>
<td>ABA01549</td>
<td>16355.5/5.98</td>
<td>178</td>
<td>3.5e-14</td>
<td>28</td>
<td>100(41)</td>
</tr>
<tr>
<td>3</td>
<td>Carboxymethyl-glutamate synthase 1 and</td>
<td>ABA01549</td>
<td>16355.5/5.98</td>
<td>289</td>
<td>1.8e-25</td>
<td>33</td>
<td>100(44)</td>
</tr>
<tr>
<td></td>
<td>Hypothetical protein LOC505130 (Liver, unknown family, A3 family)</td>
<td>AAE72036</td>
<td>69318.6/6.4</td>
<td>56</td>
<td>0.031</td>
<td>21</td>
<td>100(44)</td>
</tr>
<tr>
<td>6</td>
<td>Heat shock protein 90k (Hsp90 family)</td>
<td>AAD31339</td>
<td>92824.8/7.7</td>
<td>144</td>
<td>5.6e-11</td>
<td>38</td>
<td>85(29)</td>
</tr>
<tr>
<td>9</td>
<td>p97 subunit of 153 Ma2(2+) - ATPase</td>
<td>CA54146</td>
<td>89700.5/6.6</td>
<td>103</td>
<td>7.6e-13</td>
<td>41</td>
<td>100(30)</td>
</tr>
<tr>
<td>11</td>
<td>78 kDa glucose-regulated protein precursor (Hsp70 family) and</td>
<td>Q91883</td>
<td>73705.4/6.6</td>
<td>163</td>
<td>7.6e-13</td>
<td>46</td>
<td>100(37)</td>
</tr>
<tr>
<td></td>
<td>Hypothetical LOC13952.1 (Lactamase, beta 2)*</td>
<td>AAB48304</td>
<td>32827.6/6.1</td>
<td>57</td>
<td>0.029</td>
<td>34</td>
<td>100(30)</td>
</tr>
<tr>
<td>12</td>
<td>Unknown (protein for LOC50458 (Hsp70 family))</td>
<td>AAI41200</td>
<td>72489.5/5.5</td>
<td>171</td>
<td>1.1e-13</td>
<td>43</td>
<td>100(38)</td>
</tr>
<tr>
<td>15</td>
<td>74kDa serum albumin and</td>
<td>AAF11223</td>
<td>72476.5/5.7</td>
<td>157</td>
<td>2.8e-12</td>
<td>54</td>
<td>100(36)</td>
</tr>
<tr>
<td></td>
<td>Serum albumin B precursor (74 kDa serum albumin)</td>
<td>P14872</td>
<td>72503.5/5.7</td>
<td>133</td>
<td>7.6e-10</td>
<td>28</td>
<td>51(17)</td>
</tr>
<tr>
<td>21</td>
<td>Serum albumin A precursor</td>
<td>P08759</td>
<td>72633.5/5.3</td>
<td>56</td>
<td>0.017</td>
<td>12</td>
<td>19(7)</td>
</tr>
<tr>
<td>22</td>
<td>Calreticulin</td>
<td>CA54800</td>
<td>48542.4/3.9</td>
<td>74</td>
<td>0.0003</td>
<td>20</td>
<td>80(14)</td>
</tr>
<tr>
<td>27</td>
<td>Phospholipomucin 1</td>
<td>AAS48786</td>
<td>61904.5/9</td>
<td>226</td>
<td>3.5e-19</td>
<td>49</td>
<td>95(32)</td>
</tr>
<tr>
<td>27</td>
<td>Carboxy</td>
<td>AAS45904</td>
<td>86020.7/6.6</td>
<td>564</td>
<td>8.5e-13</td>
<td>38</td>
<td>100(39)</td>
</tr>
<tr>
<td>28</td>
<td>Carboxy</td>
<td>AAS45904</td>
<td>86020.7/6.6</td>
<td>229</td>
<td>7.1e-18</td>
<td>59</td>
<td>100(39)</td>
</tr>
<tr>
<td>29</td>
<td>Carboxy</td>
<td>AAS45904</td>
<td>86020.7/6.6</td>
<td>141</td>
<td>1.1e-19</td>
<td>59</td>
<td>100(39)</td>
</tr>
<tr>
<td>30</td>
<td>Carboxy</td>
<td>AAS45904</td>
<td>86020.7/6.6</td>
<td>154</td>
<td>5.6e-12</td>
<td>57</td>
<td>49(18)</td>
</tr>
<tr>
<td>31</td>
<td>Hypothetical protein LOC50458 protein (Protein disulfide isomerase)</td>
<td>AAI54954</td>
<td>57000.4/7.2</td>
<td>121</td>
<td>1.1e-08</td>
<td>37</td>
<td>100(22)</td>
</tr>
<tr>
<td>32</td>
<td>P4b protein (Protein disulfide isomerase)</td>
<td>AAS46736</td>
<td>58380.5/8.1</td>
<td>115</td>
<td>4.4e-08</td>
<td>32</td>
<td>86(20)</td>
</tr>
<tr>
<td>33</td>
<td>P4b protein (Protein disulfide isomerase)</td>
<td>AAS46736</td>
<td>58380.5/8.1</td>
<td>190</td>
<td>1.4e-15</td>
<td>47</td>
<td>100(38)</td>
</tr>
<tr>
<td>34</td>
<td>Beta-tubulin at 3D</td>
<td>AAS4297</td>
<td>50340.4/7.9</td>
<td>95</td>
<td>4.6e-06</td>
<td>38</td>
<td>90(18)</td>
</tr>
<tr>
<td>35</td>
<td>Tubulin, beta 5</td>
<td>AAS4297</td>
<td>50340.4/7.9</td>
<td>43</td>
<td>1.4e-06</td>
<td>19</td>
<td>80(14)</td>
</tr>
<tr>
<td>36</td>
<td>Tubulin, alpha 7</td>
<td>AAS43102</td>
<td>50342.4/7.9</td>
<td>119</td>
<td>1.4e-07</td>
<td>48</td>
<td>73(17)</td>
</tr>
<tr>
<td>37</td>
<td>Keratin 8</td>
<td>AAI544116</td>
<td>56029.5/6.5</td>
<td>90</td>
<td>1.2e-03</td>
<td>35</td>
<td>88(18)</td>
</tr>
<tr>
<td>38</td>
<td>Unknown (protein for LOC50458) (Fumarase)</td>
<td>AAI54348</td>
<td>52149.6/6.6</td>
<td>80</td>
<td>0.00012</td>
<td>39</td>
<td>100(16)</td>
</tr>
<tr>
<td>39</td>
<td>ATP synthase, F1 transporting antichoronal F1 complex, beta subunit</td>
<td>AAI54348</td>
<td>52149.6/6.6</td>
<td>136</td>
<td>3.5e-10</td>
<td>69</td>
<td>70(20)</td>
</tr>
<tr>
<td>40</td>
<td>67 kDa lamin receptor precursor</td>
<td>AAW6380</td>
<td>34208.4/11</td>
<td>93</td>
<td>6.9e-06</td>
<td>45</td>
<td>49(13)</td>
</tr>
<tr>
<td>41</td>
<td>Vimentin 4</td>
<td>CA54742</td>
<td>33521.6/9.8</td>
<td>93</td>
<td>7.5e-09</td>
<td>30</td>
<td>87(17)</td>
</tr>
<tr>
<td>42</td>
<td>Migratory mammalian and</td>
<td>AAS52764</td>
<td>17245.5/5.9</td>
<td>62</td>
<td>0.0007</td>
<td>46</td>
<td>99(9)</td>
</tr>
<tr>
<td></td>
<td>Similar to unknown (family, numbers A1)</td>
<td>AAI46080</td>
<td>56811.6/10</td>
<td>57</td>
<td>0.027</td>
<td>27</td>
<td>100(15)</td>
</tr>
<tr>
<td>44</td>
<td>Similar to unknown (family, numbers A1)</td>
<td>AAI46080</td>
<td>56811.6/10</td>
<td>109</td>
<td>1.8e-07</td>
<td>31</td>
<td>40(13)</td>
</tr>
<tr>
<td>45</td>
<td>Similar to unknown (family, numbers A1)</td>
<td>AAI46080</td>
<td>56811.6/10</td>
<td>133</td>
<td>7.1e-10</td>
<td>33</td>
<td>71(20)</td>
</tr>
<tr>
<td>46</td>
<td>Alldehyde dehydrogenase class 1</td>
<td>BAA176412</td>
<td>55790.5/7.1</td>
<td>138</td>
<td>2.2e-10</td>
<td>39</td>
<td>100(26)</td>
</tr>
<tr>
<td>49</td>
<td>ARPS actin-related protein 3 homolog (yeast)</td>
<td>AAI47983</td>
<td>47716.6/7</td>
<td>66</td>
<td>0.0097</td>
<td>27</td>
<td>71(12)</td>
</tr>
<tr>
<td>50</td>
<td>EHase 1, alpha</td>
<td>AAI54369</td>
<td>47817.6/7</td>
<td>178</td>
<td>2.2e-14</td>
<td>51</td>
<td>71(22)</td>
</tr>
<tr>
<td>51</td>
<td>Alpha-nucleate</td>
<td>AAI54306</td>
<td>47930.5/9</td>
<td>104</td>
<td>5.6e-07</td>
<td>37</td>
<td>60(18)</td>
</tr>
<tr>
<td>54</td>
<td>5-aminoacid-aminomutase dehydrogenase</td>
<td>CA54306</td>
<td>48105.5/9</td>
<td>125</td>
<td>4.4e-09</td>
<td>34</td>
<td>45(14)</td>
</tr>
<tr>
<td>55</td>
<td>Adenosylhomocysteinase</td>
<td>AAI53400</td>
<td>48172.6/9.4</td>
<td>181</td>
<td>1.1e-14</td>
<td>42</td>
<td>78(22)</td>
</tr>
<tr>
<td>57</td>
<td>MGC18785 protein (Aldehyde dehydrogenase 2 family)</td>
<td>AAI77908</td>
<td>57727.7/5.5</td>
<td>68</td>
<td>0.0022</td>
<td>25</td>
<td>71(12)</td>
</tr>
</tbody>
</table>
59 MGC0785 protein (Aldehyde dehydrogenase 2 family)
 MGC0785 protein (Aldehyde dehydroge
genase 2 family)
 Acn, cytoplasmic type 5
 Acrin. Aminoacylase 1
 GDP disaccharide inhibitor 2
 Hypothetical LOC49713 (Locate dehydrogenase 1)
 Hypothetical LOC49713 (Locate dehydrogenase 1)
 Mixture of Argininosuccinate synthase and
 E lương factor 1 gamma
 Argininosuccinate synthase 1
 Senesence marker protein-30
 Mixture of Fructose-1,6-biphosphatase and
 Phosphofructokinase related
 MGC2518 protein (Ermr/cadherin/mesoin family)
 Arginase
 Fructose-1,6-biphosphatase
 Hypothetical protein MGC854664 (3-hydroxysterolamine 3-
diolsynthase)
 Hypothetical protein MGC856844 (3-hydroxysterolamine 3-
diolsynthase)
 Glycerol kinase
 Hypothetical protein MGC35995 (RNA pol II accessory
 factor, Cdc75 family) and
 Hypothetical protein MGC83218 (Ribose 5-phosphate
 isomerase)
 L-lactate dehydrogenase B chain
 L-lactate dehydrogenase B chain
 L-lactate dehydrogenase B chain
 Lactate dehydroge
genase A and
 Unknown (protein for MGC11513) (Methylene basic
 protein)
 Lactate dehydrogene
 A
 Unknown (protein for DAGE-481355) (Tetraspecipptide repeat domain)
 Phosphoglucomutase 1
 Heat shock protein gp96 (Hsp90 family)
 Glucose regulated protein, 58 kDa (Protein disulfide
 isomerase)
 Aminoacylase 1 and
 Translation initiation factor IF2A II
 Unknown (protein for DAGE-513341) (Argynin-
 RNA synthase)
 Fumarylacetoacetate hydrolase
 Glutamate dehydrogenase 1
 MGC38368 protein (Phosphoethealaneamine N-
methyltransferase) or
 Mixture of MGC9608 protein (Protein disulfide
 isomerase, A, P5 subfamily) and
 Keratin 18
 Keratin 6 and
 Protein disulfide isomerase-related protein (Thioredoxin
 domain)
 MGC79098 protein (Protein disulfide isomerase)
 Fibronectin gamma chain precursor
 LOC495086 protein (ATP citrate lyase)
 Similar to ubiquitin-cytoskeleton c reductase core
 protein 1
 A2Z (PDI-type ATP synthase, alpha subunit)
 Unknown (protein for MGC-52648) (Hsp 70 family
 Unknown (protein for MGC-52648) (Hsp 70 family
 Glycyl-tRNA synthetase
 Transketolase

AA577908 577277.55 210 1.4e-17 45 47(21)
AA577908 577277.55 192 8.8e-16 42 68(23)
AA577908 577277.55 164 5.8e-33 51 100(27)
AA577819 444035.43 74 0.0006 35 95(13)
AA578017 509675.44 91 1.2e-05 50 100(17)
AA82651 472195.77 150 1.4e-11 53 81(21)
AA82651 472195.77 161 1.1e-12 54 74(23)
AA54941 471197.57 142 8.9e-11 36(18)
CA644567 501017.55 - - - -
AA54941 471197.57 145 4.4e-11 49 94(23)
BA93719 334515.18 166 3.5e-13 68 100(24)
AA53784 371855.78 233 7e-20 - 100(36)
AA56120 391265.68 - - - -
AA579712 691315.79 62 0.0081 25 61(16)
AA43635 354535.21 117 2.8e-08 45 90(17)
AA53784 371855.78 67 0.0028 30 100(13)
AA81603 327145.54 79 0.00017 48 91(15)
AA81603 327145.54 99 1.7e-06 53 96(18)
AA56091 625945.93 105 4.4e-07 32 60(15)
AA439065 607019.68 59 0.018 24 94(16)
AA88591 253806.11 56 0.034 39 94(10)
P21119 360776.25 126 3.5e-09 47 68(16)
P21119 360776.25 140 1.4e-10 49 77(17)
P21119 360776.25 110 3.8e-05 35 47(12)
P21119 360776.25 151 1.1e-15 46 46(18)
AA45015 363748.17 58 0.024 42 100(11)
AA45015 363748.17 75 0.00044 36 100(14)
AA94440 427475.41 58 0.025 34 96(13)
AA43876 619045.81 113 7e-08 30 47(16)
AA21339 928284.77 90 1.5e-05 30 81(21)
P21119 360776.25 140 1.4e-10 41 100(24)
AA77639 440435.43 74 0.00057 36 1000(14)
AA45237 480575.32 85 4.4e-05 37 87(15)
AA97633 749913.31 186 3.5e-15 40 63(28)
AA54283 489786.22 63 0.0075 36 87(14)
AA77910 595288.03 64 0.0061 31 100(18)
AA78119 572785.25 59 0.019 22 66(10)
AA77228 481535.11 186 3.5e-15 - 97(34)
AA54993 480315.20 - - - -
AA44116 540295.25 71 0.0012 32 55(12)
AA48887 422855.01 125 4.4e-09 30 37(13)
AA577288 481535.11 149 1.8e-11 38 33(24)
P17634 506595.43 55 0.043 24 87(11)
AA82453 1208306.59 64 0.0018 11 61(16)
AA49288 528265.83 65 0.0049 37 53(18)
AA80094 599669.13 135 4.4e-10 35 45(19)
AA41200 724895.03 120 1.6e-06 36 96(22)
AA41200 724895.03 135 4.4e-10 40 86(22)
AA77232 849576.98 92 9.9e-06 31 95(21)
AA56101 683786.27 80 0.00016 30 75(24)
<table>
<thead>
<tr>
<th>Protein Description</th>
<th>Accession</th>
<th>Score</th>
<th>p-value</th>
<th>Seq. Cov. (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guanine nucleotide binding protein, beta 2, related sequence 1 (G-protein)</td>
<td>AAH41541</td>
<td>355037.60</td>
<td>1.1e-16</td>
<td>42(18)</td>
<td></td>
</tr>
<tr>
<td>MGCR8032 protein (Adenylate kinase)</td>
<td>AAH75155</td>
<td>408145.63</td>
<td>29</td>
<td>89(11)</td>
<td></td>
</tr>
<tr>
<td>Adenosylhomocysteinase and MGCR81895 protein (Methylenoformyl-Coenzyme A carboxylase 1 (alpha))²</td>
<td>AAH73400</td>
<td>487228.04</td>
<td>33</td>
<td>84(15)</td>
<td></td>
</tr>
</tbody>
</table>

a) Abbreviations used: #, number; Theor., theoretical; Seq. Cov. (%), percent sequence coverage.

b) Protein identified with a peptide tolerance of 150 ppm. Unless otherwise stated all other proteins were identified using a peptide tolerance of 100 ppm.

c) *, Information on protein name/family was obtained by homology searches using Blastp.

d) Protein scores greater than 54 were significant (p<0.05).
Proteins identified in X. laevis plasma

- 123 identified proteins
- Constitutive + differentially regulated
- 19 protein families

- Albumin
- Endodermin
- Alpha-2-macroglobulin
- Apolipoprotein A1
- Complement C3/C4
- Enolase 3
- Creatine kinase
- Estrogen regulated proteinEp45 precursor
- Immunoglobulin heavy and light chain
- Fibrinogen (alpha, beta, gamma)
- Fructose-1,6-bisphosphate aldolase
- Actin
- Serotransferrin precursor
- Triosephosphate isomerase
- Vimentin
- Ficolin-1
- Fetuin
- Hypotetical proteins

Control, pooled male plasma, 500 ug, CBB-G250

Differentially regulated proteins
Differential expression in X. laevis liver

Male, 10^{-8} M EE2, pooled/individual, \geq 2-fold regulation

Complex pattern of expression

430 proteins differentially regulated by EDC treatment

106 differentially regulated spots represented identified proteins
Proteins identified in X. laevis liver

241 analyzed proteins
196 identities
131 unique protein spots
17% of the protein spots contained > 1 protein

67 kDa laminin receptor precursor
ATP synthase alpha/beta
Tubulin, beta 5 and 7 alpha
Keratin
Thioredoxin
Catalase
DEAD box helicase
GDP dissociation factor
Glutaminyl t-RNA synthetase
Fibrinogen gamma chain precursor
Insulinase

10^{-8} \text{ M } \text{EE2, female, 500 µg pooled liver}

- Carbamoyl phosphate synthetase
- Hsp 90b
- Hsp 70
- Calreticulin
- Thioredoxin
- p97 subunit of 15S Mg(2+) ATPase
- Serum albumin B precursor
- Glycyl t-RNA synthetase
- Catalase
- Aldehyde dehydrogenase
- Argininosuccinate synthase
- Fructose-1,6-bisphosphatase
- Vitellogenin
- Ribosomal protein L-10
- Fructose-1,6-bisphosphate aldolase/7-keto-8-aminopelargonate synthetase
Proteins identified in X. laevis liver

241 analyzed proteins
196 identities
131 unique protein spots
17% of the protein spots contained > 1 protein

67 kDa laminin receptor precursor
ATP synthase alpha/beta
Tubulin, beta 5 and 7 alpha
Keratin
Thioredoxin
Catalase
DEAD box helicase
GDP dissociation factor
Glutaminyl t-RNA synthetase
Fibrinogen gamma chain precursor
Insulinase

10^-8 M EE2, female, 500 µg pooled liver

Carbamoyl phosphate synthetase
Hsp 90b
p97 subunit of 15S Mg(2+) ATPase
Serum albumin B precursor
Glycyl t-RNA synthetase
Hsp 70
Calreticulin
Thioredoxin
Fructose-1,6-bisphosphatase
Ribosomal protein L-10
Fructose-1,6-bisphosphate aldolase/7-keto-8-aminopelargonate synthetase
Vitellogenin
Catalase
Aldehyde dehydrogenase
Argininosuccinate synthase
Gene ontology (GO), is a controlled vocabulary used to describe molecular functions, biological processes and the location of gene products.
1-D SDS-PAGE and Vtg-western blot of plasma

Female

<table>
<thead>
<tr>
<th>kDa</th>
<th>Control</th>
<th>EE2, 10^{-8} M</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.5% PA

Male

<table>
<thead>
<tr>
<th>kDa</th>
<th>Control</th>
<th>EE2, 10^{-8} M</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.5% PA

Anti-xenopus Vtg 1:2000

Vtg
Development of dipstick for endocrine disruption monitoring - non-disruptive sampling of fish mucus
Detection of Vtg in carp mucus

Development and testing of Vtg LFIA

LFIA = Lateral Flow Immunoassay
Rapid non-invasive testing method for detection of Vtg in carp mucus.
Vtg in plasma vs. mucus

EE2, MDHT, FLU
Vtg in plasma vs. mucus

EE2, MDHT, FLU
Vtg in plasma vs. mucus

EE2, MDHT, FLU

TAM Field
Vtg in carp plasma vs. mucus

Oneway Analysis of log ELISA plasma By Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Plasma Vtg µg/ml ±SD (N)</th>
<th>Mucus Vtg µg/ml ±SD (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated control</td>
<td>202±310 (10)</td>
<td>0.41±0.32 (8)</td>
</tr>
<tr>
<td>Solvent control</td>
<td>86±99 (10)</td>
<td>0.54±0.97 (9)</td>
</tr>
<tr>
<td>EE2 – 1 ng/l</td>
<td>169±157 (10)</td>
<td>1.04±1.93 (9)</td>
</tr>
<tr>
<td>EE2 – 4 ng/l</td>
<td>775±1278 (9)</td>
<td>5.25±6.11 (9)*</td>
</tr>
<tr>
<td>EE2 – 16 ng/l</td>
<td>5935±4453 (8)*</td>
<td>27.6±11.6 (7)*</td>
</tr>
<tr>
<td>EE2 – 64 ng/l</td>
<td>35355±20978 (10)*</td>
<td>30.8±25.5 (2)*</td>
</tr>
</tbody>
</table>

* Significantly different from untreated control, Dunnetts test of log-transformed data (p<0.05)

Carp Vtg ELISA kit (Biosense)
Estrogen regulated protein Ep45 precursor (Ep45)

- Belongs to the serpin superfamily of proteinase inhibitors
- Similarity to Hu alpha-1-antitrypsin, the major plasma serpin
- Absent in control, 6-fold increase in expression within 8 days by E2 exposure
- Induction parallels that of Vtg
- Possible role in female reproduction by protecting Vtg from proteolytic cleavage during transport

Xenopus plasma: Anti-Ep45-peptide western blots

Xenopus laevis plasma; females exposed to EE₂ / controls - EP45 detection.

controls
p-b1 p-b4 p-b8 p-b12 p-b16
250 →
150 →
100 →
75 →
50 →
37 →

Xenopus laevis plasma; females exposed to Flu / MDHT EP45 detection.

EE2
FLU
MDHT
TAM
Lambro
p-b12 p-b15 p-b16
p-b18 p-b22 p-b23 p-b24 p-b28 p-b37 p-b38 p-b39
250 →
150 →
100 →
75 →
50 →
37 →

Xenopus laevis plasma; males exposed to EE₂ / controls - EP45 detection.

controls
p-b47 p-b51 p-b55 p-b59 p-b63
250 →
150 →
100 →
75 →
50 →
37 →

Xenopus laevis plasma; males exposed to Flu / MDHT EP45 detection.

EE2
FLU
MDHT
TAM
Lambro
p-b2 p-b4 p-b7 p-b10 p-b13 p-b14
p-b17 p-b19 p-b20 p-b21 p-b33 p-b36 p-b35 p-b40
250 →
150 →
100 →
75 →
50 →
37 →
Xenopus plasma: Anti-Ep45-peptide western blots

Xenopus laevis plasma; females exposed to EE₂ / controls - EP45 detection.

Xenopus laevis plasma; males exposed to EE₂ / controls - EP45 detection.

Xenopus laevis plasma; females exposed to Flu / MDHT EP45 detection.

Xenopus laevis plasma; males exposed to Flu / MDHT EP45 detection.

Xenopus laevis plasma; females exposed to TAM / Lambro EP45 detection.

Xenopus laevis plasma; males exposed to TAM / Lambro EP45 detection.
Fig. 3. Vitellogenin (VTG) plasma protein levels of male and female *X. laevis* according to Figs. 1 and 2. The concentration is given as μg/mL. Significant deviations from the control were tested by one-way ANOVA, Dunnett’s-test and are indicated by asterisks (** = p < 0.01, * = p < 0.05).
Xenopus plasma: Anti-serotransferrin-peptide western blots

Xenopus laevis plasma; females exposed to EE2 / controls - Serotransferrin detection.

- EE2 controls p-b41 p-b44 p-b45 p-b46 p-b26 p-b27 p-b28 p-b32
- FLU p-b1 p-b5 p-b8 p-b12 p-b15 p-b16
- MDHT p-b31 p-b32 p-b33 p-b34 p-b35 p-b36
- TAM p-b16 p-b22 p-b23 p-b24 p-b36 p-b37 p-b38 p-b39

Xenopus laevis plasma; males exposed to EE2 / controls - Serotransferrin detection.

- EE2 controls p-b47 p-b48 p-b25 p-b29 p-b30 p-b31
- FLU p-b2 p-b3 p-b4 p-b7 p-b10 p-b11 p-b13 p-b14
- MDHT p-b17 p-b19 p-b20 p-b21 p-b23 p-b34 p-b35 p-b40

Xenopus laevis plasma; females exposed to Flu / MDHT Serotransferrin detection.

- TAM / Lambro
Xenopus plasma: Anti-serotransferrin-peptide western blots

Xenopus laevis plasma; females exposed to EE2 / controls - Serotransferrin detection.

Xenopus laevis plasma; females exposed to Flu / MDHT - Serotransferrin detection.

Xenopus laevis plasma; males exposed to EE2 / controls - Serotransferrin detection.

Xenopus laevis plasma; males exposed to Flu / MDHT - Serotransferrin detection.
Xenopus plasma: Anti-fibrinogen β -peptide western blots

Xenopus laevis plasma; females exposed to EE₂ / controls - fibrinogen beta detection.

Xenopus laevis plasma; females exposed to Flu / MDHT fibrinogen beta detection.

Xenopus laevis plasma; females exposed to TAM / Lambro - fibrinogen beta detection.
Xenopus plasma: Anti-fibrinogen β-peptide western blots

Xenopus laevis plasma; females exposed to EE2 / controls - fibrinogen beta detection.

<table>
<thead>
<tr>
<th>Controls</th>
<th>EE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-b41</td>
<td>p-b44</td>
</tr>
<tr>
<td>p-b45</td>
<td>p-b46</td>
</tr>
<tr>
<td>p-b26</td>
<td>p-b28</td>
</tr>
<tr>
<td>p-b29</td>
<td>p-b30</td>
</tr>
<tr>
<td>p-b32</td>
<td>p-b35</td>
</tr>
</tbody>
</table>

250 →
150 →
100 →
75 →
50 →
37 →

Xenopus laevis plasma; females exposed to Flu / MDHT fibrinogen beta detection.

<table>
<thead>
<tr>
<th>FLU</th>
<th>MDHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-b1</td>
<td>p-b5</td>
</tr>
<tr>
<td>p-b8</td>
<td>p-b9</td>
</tr>
<tr>
<td>p-b12</td>
<td>p-b15</td>
</tr>
<tr>
<td>p-b16</td>
<td></td>
</tr>
</tbody>
</table>

250 →
150 →
100 →
75 →
50 →
37 →

Xenopus laevis plasma; females exposed to TAM / Lambro - fibrinogen beta detection.

<table>
<thead>
<tr>
<th>TAM</th>
<th>Lambro</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-b18</td>
<td>p-b22</td>
</tr>
<tr>
<td>p-b23</td>
<td>p-b24</td>
</tr>
<tr>
<td>p-b36</td>
<td>p-b37</td>
</tr>
<tr>
<td>p-b38</td>
<td>p-b39</td>
</tr>
</tbody>
</table>

250 →
150 →
100 →
75 →
50 →
37 →

Xenopus laevis plasma; males exposed to EE2 / controls - fibrinogen beta detection.

<table>
<thead>
<tr>
<th>Controls</th>
<th>EE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-b47</td>
<td>p-b48</td>
</tr>
<tr>
<td>p-b25</td>
<td>p-b29</td>
</tr>
<tr>
<td>p-b30</td>
<td>p-b31</td>
</tr>
</tbody>
</table>

250 →
150 →
100 →
75 →
50 →
37 →

Xenopus laevis plasma; males exposed to Flu / MDHT fibrinogen beta detection.

<table>
<thead>
<tr>
<th>FLU</th>
<th>MDHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-b2</td>
<td>p-b3</td>
</tr>
<tr>
<td>p-b4</td>
<td>p-b7</td>
</tr>
<tr>
<td>p-b10</td>
<td>p-b11</td>
</tr>
<tr>
<td>p-b13</td>
<td>p-b14</td>
</tr>
</tbody>
</table>

250 →
150 →
100 →
75 →
50 →
37 →

Xenopus laevis plasma; males exposed to TAM / Lambro - fibrinogen beta detection.

<table>
<thead>
<tr>
<th>TAM</th>
<th>Lambro</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-b17</td>
<td>p-b19</td>
</tr>
<tr>
<td>p-b20</td>
<td>p-b21</td>
</tr>
<tr>
<td>p-b33</td>
<td>p-b34</td>
</tr>
<tr>
<td>p-b35</td>
<td>p-b40</td>
</tr>
</tbody>
</table>

250 →
150 →
100 →
75 →
50 →
37 →
Xenopus plasma: Anti-fibrinogen β-peptide western blots

Xenopus laevis plasma; females exposed to EE2/controls - fibrinogen beta detection.

Xenopus laevis plasma; females exposed to Flu / MDHT - fibrinogen beta detection.

Xenopus laevis plasma; females exposed to TAM / Lambro - fibrinogen beta detection.

Xenopus laevis plasma; males exposed to EE2/controls - fibrinogen beta detection.

Xenopus laevis plasma; males exposed to Flu / MDHT - fibrinogen beta detection.

Xenopus laevis plasma; males exposed to TAM / Lambro - fibrinogen beta detection.
Proteome changes in Atlantic cod larvae exposed to produced water
Biomarker discovery in Atlantic cod fry liver after continuous exposure to produced water

Kjersem (2007), PhD thesis
Figure 1 Process flow for the development of novel protein biomarker candidates. ‘Numbers of analytes’ refers to the number of proteins expected to be evaluated as candidate biomarkers in each phase of development. ‘Numbers of samples’ refers to the sample requirements for each phase. LC-MS/MS, liquid chromatography tandem mass spectrometry; SID, stable isotope dilution; MRM, multiple reaction monitoring.
Conclusions
Conclusions

A toxicoproteomic strategy has been established to identify biomarker candidates under various exposure regimes in different species.

Higher identification success rates are obtained in species with better genomic coverage (e.g. X. laevis > carp > cod).

Proteome changes linked to annotated databases and Gene Ontology terms may help elucidates toxicological mechanisms and modes of action.

In general, responses specific to a single chemical are interesting as biomarker candidates, however suites of biomarkers may prove more informative in field studies targeting emerging pollutants - e.g. applied in protein/antibody arrays.
Acknowledgements

EASYRING partners (2003-2005):
Alberta Mandich, University of Genova, Italy
Luigi Viganó, IRSA-CNR, Milano, Italy
Emilio Benfenati, Mario Negri Institute, Milano, Italy
Anne Van Cauwenberge, UMH, Mons, Belgium
Mark Cronin, LJMU, Liverpool, UK

The Institute of Marine Research, Bergen, Norway
Computational Biology Unit, University of Bergen

Support: EU (FP5): EASYRING project, Total E&P,
the Norwegian Research Council