A bioassay-directed monitoring strategy to assess the risks of complex pollutant mixtures in drinking water

Ron van der Oost & Minne Heringa
Waternet: water cycle management

Surface and ground water

Waste water
• Introduction
• Biomonitoring in drinking water production
 – In vivo bioalarm system of sources (surface water)
 – Overview of in vitro bioassay applications from source to tap
• Interpretation of biomonitoring data
 – Limitations of in vitro assays
 – Proposal for guidelines and monitoring strategy
• Case study: endocrine disruption
Monitoring effects or substances?

- **Substances**:
 - selected priority pollutants (e.g. 33 for EU WFD)

- **Effects**:
 - General toxicity: effects of total mixture of pollutants
 - Specific toxicity: effects of substances with a similar mechanism of toxic action; high sensitivity!
 - Unknown cause of effect (TIE needed)

More reliable risk assessment by use of toxic screening prior to relevant chemical analyses
Monitoring effects or substances?

Toxicity:

😊 Limited amount of assays can give a cost-effective and reliable risk assessment
😊 Low substance specificity
😊 Bioavailability included
😊 Mixture toxicity included
😊 Metabolites included
😊 Unknown substances included
😊 Chronic exposure is difficult and expensive
😊 No accepted classification available
😊 Biomagnification not included
😊 No in vivo effects no worries

Chemistry:

😊 Search for a needle in a haystack: obligatory analysis of more than 200 substances in drinking water
😊 Many analyses are yet impossible (e.g. matrix effects)
😊 Not enough toxicity data available for risk assessment (ERA)
😊 No information on bioavailability
😊 No information on mixture toxicity
😊 Low concentrations still worries
😊 Surrogate security and accuracy

D. De Zwart (RIVM, Netherlands)

October 2007
NORMAN workshop, Amsterdam
Mixture toxicity

<table>
<thead>
<tr>
<th>Interaction</th>
<th>No Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same mode of action</td>
<td>Complex similar</td>
</tr>
<tr>
<td>Different mode of action</td>
<td>Dependent</td>
</tr>
</tbody>
</table>

- No interaction (synergism & antagonism) at low dose
- Response-addition not relevant at low dose
- Dose-addition can be relevant at low doses (TEF concept)

For drinking water dose-addition is most relevant!

(Plackett & Hewlett, 1952)
Outline

- Introduction
- Biomonitoring in drinking water production
 - In vivo bioalarm system of sources (surface water)
 - Overview of in vitro bioassay applications from source to tap
- Interpretation of biomonitoring data
 - Limitations of in vitro assays
 - Proposal for guidelines and monitoring strategy
- Case study: endocrine disruption
Risk assessment of mixtures in drinking water

Current biomonitoring applications:
• In vivo bio alarm for general toxicity of source water

Proposed strategy for additional biomonitoring:
• In vitro screening for specific toxicity from source to tap
• Evaluation of ‘suspicious’ in vitro effects with in vivo assays or ADME tests
• Identification of effects by chemical analyses
Bioassay requirements

• Reliable and robust:
 – Quality assurance, reproducible (inter and intra lab comparisons)
 – International acceptance and validation

• Simple and cheap:
 – Easy and fast to perform (incl. sample preparation)
 – No expensive equipment, materials or lab facilities needed

• High throughput:
 – Fast screening of large series of samples possible
 – Possibility for on-line biosensor development

• Animal friendly:
 – Validated *in vitro* assay preferred
In vivo bioalarm system Waternet

- Online monitoring of inlet water for production of drinking water:
 - Fish behaviour
 - Daphnia movement & survival
 - Algal fluorescence & growth
 - Bacterial luminescence

After significant deviations water uptake is shut down!
Potential in vitro assays for drinking water testing

- Genotoxicity
- Carcinogenicity
- Endocrine disruption
- Teratogenicity
- Neurotoxicity
- Immunotoxicity
- Detoxification
 - Phase I: metabolism
 - Phase II: conjugation
 - Phase III: excretion
Genotoxicity

Low doses of genotoxic substances may damage human DNA

Evaluation made by Minne Heringa (KIWA):

- **Ames II** and high throughput comet or micronucleus assays are the most promising assays to assess DNA mutations and chromosomal abbreviations
- Results of Ames II application in drinking water production presented by Minne Heringa in next talk
Cancer can be caused by genotoxic and non-genotoxic (tumor promoter) substances

Relevant assays for carcinogenicity:

- **DNA microarrays** seem to be most relevant to assess risks of non-genotoxic carcinogens (Minne Heringa)
- Chemically activated luciferase gene expression (**CALUX**) assays relevant for tumor promoting activity through AhR or E2 receptor mediated bioactivation
- **Gap junction intercellular communication (GJIC)** assay may be indicative for tumor promotion
Many chemicals are able to disrupt hormonal systems through binding to endocrine receptors.

Relevant assays for endocrine disruption:
- **CALUX assays** (α and β-ER, AR & pipelines) relevant for endocrine disruption at various hormonal receptors; initial results will be presented.
- **YES & YAS assays**, E-screen, MCF-7, comparable but less sensitive and reproducible compared to CALUX.
Certain chemicals are able to cause dramatic effects on fetal development

Relevant in assays for teratogenicity:

- **Embryonic stem cell test (EST)** is a relevant in vitro assay for teratogenic activity.
- Most teratogenic research is performed with in vivo assays, such as the zebra fish embryo assay (Juliette Legler, IVM); verification of in vitro effects.

Normal embryo

Methyl mercury exposure
Certain water soluble chemicals cause effects on the central nerve system at very low doses.

Relevant in assays for neurotoxicity:

- **Acetyl cholinesterase (ACHE) inhibition** is a relevant in vitro assay for neurotoxic activity.
- Cell culture or yeast assays with human neurotransmitters.
- Development of assays based on signal transmission (Tinca Murk, WUR).
- Development of biosensors to detect terrorist actions at drinking water distribution?
Certain water soluble chemicals cause a Variety of effects on the immune system

Relevant in assays for immunotoxicity:

- Complication: the immune system can be disrupted in many ways, so a single assay is virtually impossible (microarray!)
- Development of **NF-KB CALUX** for assessment of anti-inflammatory effects (Bram Brouwer, BDS)
- Development of in vitro **B lymphocyte proliferation** assay (Raymond Pieters, IRAS)
Detoxification

Many chemicals are able to affect detoxification processes at higher doses

Phase I: metabolism (bioactivation)
- e.g. Cytochrome P450 (DR CALUX): relevance for polar compounds?

Phase II: conjugation
- e.g. Glutathione S transferase: low sensitivity

Phase III: excretion
- e.g. ABC transporter proteins (MXR): low sensitivity
Outline

- Introduction
- Biomonitoring in drinking water production
 - In vivo bioalarm system of sources (surface water)
 - Overview of in vitro bioassay applications from source to tap
- Interpretation of biomonitoring data
 - Limitations of in vitro assays
 - Proposal for guidelines and monitoring strategy
- Case study: endocrine disruption
Relevance of observed toxicity

Toxic kinetics
- External exposure
Toxic dynamics
- Internal exposure
- Effect

in vivo assays

ADME?

In vitro assays
ADME testing in vitro extracts

Uptake
- Passage through a CaCo cell monolayer can be applied to assess the potential oral uptake of toxic substances

Metabolism
- Addition of an S9 mix in order to bioactivate substances to reactive metabolites that may be more toxic than the parent compounds
- Routinely used for genotoxicity assays, but also feasible for other assays, such as teratogenicity and endocrine disruption
Proposal for effect directed guidelines

- Select a relevant reference substance for each assay
- Acceptable daily uptake (ADI) of reference is $A \ \mu g/day/kg$
- Person with body weight B can take up $A*B \ \mu g$ of the reference substance per day
- Assumed that 10% of the uptake is through drinking water, then the allowed uptake will be $A*B/10 \ \mu g$ per day
- If assumed that an average person drinks 2 liters of tapwater per day, then the maximal concentration in drinking water is $A*B/20 \ \mu g/L$
- The guideline for all substances in the mixture causing the same effect can be expressed as equivalents of the reference compound: $A*B/20 \ \mu g \ \text{REQ/L}$
Influence of uptake, distribution, metabolism and excretion in vivo is generally unknown

Toxic impact may be higher in young children

Relative uptake by drinking water may vary for different substances

Other uptake routes (inhalation and skin contact) may have an additional impact

Guidelines for in vitro assays should be regarded as threshold values for further research:

- Specific chemical analyses
- In vivo or ADME verification of effects
Proposed strategy for future risk assessment

1. Drinking water: source to tap
2. Sample preparation: extraction & clean-up
 - In vitro bioassays (metabolism & uptake)
 - Routine chemical analyses
3. Comparison with guideline (threshold value)
 - Higher than threshold: suspicious
 - Lower than threshold: negative
4. In vivo assay or specific chemical analyses
Outline

- Introduction
- Biomonitoring in drinking water production
 - In vivo bioalarm system of sources (surface water)
 - Overview of in vitro bioassay applications from source to tap
- Interpretation of biomonitoring data
 - Limitations of in vitro assays
 - Proposal for guidelines and monitoring strategy
- Case study: endocrine disruption
Endocrine disruptive effects from source to tap

- Dutch drinking water is prepared from ground water and surface water
- Total effect of mixtures is unknown and many endocrine disrupting compounds can be missed → effect monitoring required
- Application of ER CALUX assay to study water contamination in the Netherlands (KIWA Water Research)
ER CALUX assay
ER CALUX in sources

Bogers et al., 2007

River Meuse (ng EEQ/L)

River Rhine (ng EEQ/L)

Trigger value human health: 7 ng EEQ/L (RIVM)
ER CALUX in river Rhine: seasonal variance

River Rhine (Lek canal)

Bogers et al., 2007
ER CALUX in source and after pre-treatment

- Ferric chloride (FeCl₃) as pre-treatment agent
- Sodium hydroxide (NaOH) as a caustic soda

Levels:
- 0 - 0.02 ng EEQ/L
- 0.02 - 0.26 ng EEQ/L
- < 0.02 ng EEQ/L
ER CALUX after dune filtration

0.24-0.54 ng EEQ/L
ER CALUX in drinking water treatment plant

ng EEQ/L

< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02-0.04
ER CALUX in other drinking water companies

- Maas: Inname Brakel, snelfiltratie (Bergambacht), duinpassage pos: poederkool, ontharding, langzame zandfiltratie, distributie
- EVIAN: EEQ (ng/l)
 - 22-06-2005
 - 26-09-2005
 - 25-04-2006
- IJsselmeer: spaarbekken/ontharding, microzeven, coagulatie, snelfiltratie, UV/H2O2, actieve koolfiltratie, chloride, distributie
- Lekkanaal: coagulatie/snelfiltratie, infiltratie, vondafwater, ontharding, distributie, blanco

- UV 118 mJ
- UV 70 mJ

- Leek: coagulatie, snelfiltratie, infiltratie, vondafwater, ontharding, actieve koolfiltratie, langzame zandfiltratie, distributie, blanco

Conclusions on EDC effects in drinking water

- River Meuse water contains estrogenic activity above the trigger value for drinking water (7 ng EEQ/L, RIVM)
- Estrogenic activity in River Rhine water and ground water is below the trigger value for drinking water
- Very low estrogenic activity detected in drinking water distribution
- Androgenic activity was detected in none of the samples
- Robustness of Dutch water treatment plants seems to be sufficient for removal of endocrine disrupting chemicals
Thanks!