

NORMAN WG-1 Meeting

23 November 2023

Valeria Dulio, Peter von der Ohe, Nikiforos Alygizakis

controlling risks for sustainable development

Agenda 23 November NORMAN WG-1 Prioritisation

- Status of work done in 2023
 - Watch List 5th WFD
 - Paper Extended target /suspect screening prioritisation scheme
 - Mixture Risk Contribution (MRC): indicator for prioritisation of potential contributors to mixture risks
 - New models for prediction of toxicity data

• Preparing new JPAs for 2024

- New development in the prioritisation tool:
 - Implementation of the online prioritisation tool linking targe monitoring data (EMPODAT), suspect screening data (EMPOD SUSPECT), PNEC values in ECOTOXICOLOGY database, etc.
 - Improving the interface of the target prioritisation tool
 - Visualisation features
 - Defining your own categories based on criteria and associated indicators (PARC)
- Environmental status indicators
 - Number of chemicals exceeding (MRC, FoE)
 - Extent of exceedance (RQ_sum)
- How to deal with multiple values (predicted/experimental) creation of DCT and modules (important also for the Factsheets) (if time available)

Status JPA 2023

WG-1 Prioritisation

5th Watch List WFD – WG Chemicals – Member States consultation

NORMAN has contributed with comments on the candidate substances proposed by JRC – September 2023

Criteria for identification of candidate substances for WL update

The JRC proposes three criteria for the identification of new WL substances, in addition to the criterion that more (reliable) monitoring data are needed to determine the risk posed by them.

Respecting the requirements of the Environmental Quality Standards (EQS) Directive (Directive 2008/105/EC as amended by Directive 2013/39/EU), the JRC proposes the following criteria for identifying potential candidates for inclusion in the 5th WL:

- 1. Substances shortlisted, but not included in the 4th WL because of limitations in the monitoring methods available at the time or unreliable PNEC information, where for those substances an adequately sensitive analytical method and a reliable PNEC have become available.
- 2. Recommendations from MS and stakeholders as established in Article 8b of Directive 2008/105/EC, again where adequate methods and reliable PNECs are available.
- 3. Substances of emerging concern identified based on research projects and articles, in line with the article 8b of Directive 2008/105/EC (<u>e.g.</u> industrial products, pharmaceuticals, plant protection products and biocides), again where adequate methods and reliable PNECs are available.

NORMAN comments

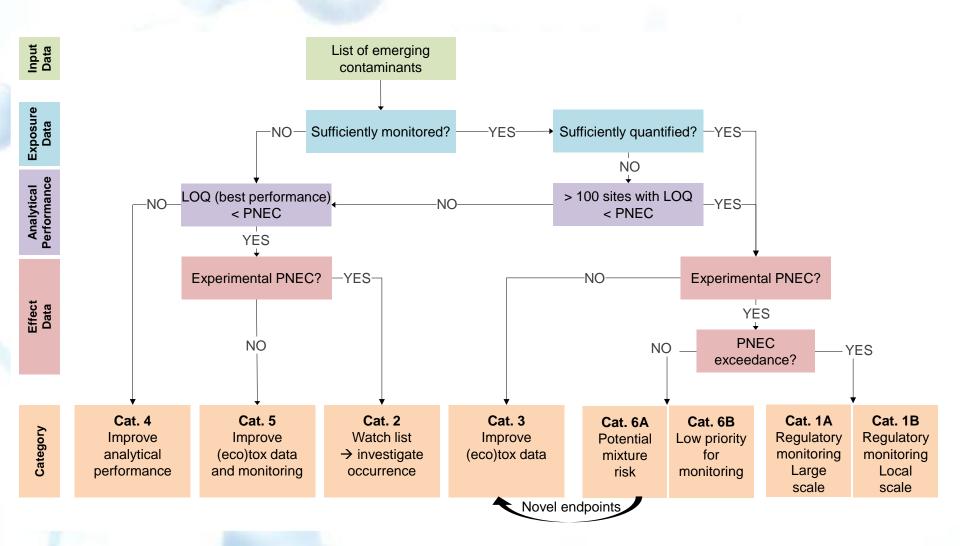
Substance name / CAS number	NORMAN comments
Gemfibrozil CAS 25812-30-0	In conclusion, significant FQ in fw but no evidence of exceedance of PNEC. Not a priority for inclusion on 5 th WL
Metazachlor CAS 67129-08-2	In line with the recommendation by JRC, <mark>metazachlor should be designated as PS or at least</mark> as RBSP —
Propranolol CAS 525-66-6	Propranolol is not a priority for inclusion on 5 th WL as an individual compound. However, since several beta-blockers are frequently found in ww (e.g. bisoprolol metoprolol, sotalol, etc.) they could be considered as a group.
Tetracycline CAS 60-54-8	In consideration of the low FQ, Tetracycline and other compounds of this group are not recommended for inclusion in the 5th WL for freshwater. However, tetracycline and oxytetracycline are sorbing strongly. Therefore, water might not be the right matrix. Still, it could be a concern in soil or sediment. This could be checked.
Oxytetracycline CAS 79-57-2	Data available for 11 countries, 63 sites, 64 analysis (2018 – 2023) and only 1 analysis > LOQ. MEC: 0.02 μ g/L (LOQ < PNEC). Same conclusions as above for tetracycline. Not recommended for inclusion in the 5th WL for freshwater. It could be further checked for sediment (see comment above).
Norfloxacin CAS 70458-96-7	In conclusion, low FQ. Data available can be considered sufficient. Norfloxacin is not recommended for inclusion in 5 th WL
Tylosin CAS 1401-69-0	Current data show low FQ in freshwater. No risk of exceedance of PNEC. Tylosin is not recommended for inclusion in 5 th WL.
Climbazole CAS_38083-17-9	Data available for a representative number of countries, but insufficient number of investigated sites. Due to high FQ and potential ED effects, Climbazole is recommended for inclusion in 5 th WL.

NORMAN comments

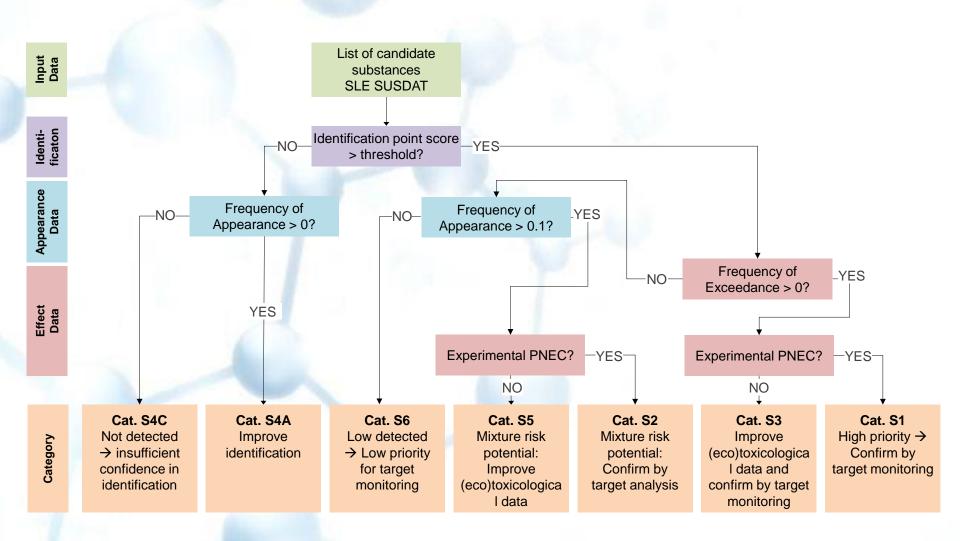
Substance name / CAS number	NORMAN comments
Ketoconazole CAS_65277-42-1	In conclusion, the number and the quality of the available monitoring data are insufficient. Moreover, due to high FQ in ww with potential exceedance of PNEC, Ketoconazole is recommended for inclusion in the 5 th WL.
Itraconazole CAS_84625-61-6	Final conclusion to be discussed in connection with the other compounds of the same group.
Epoxiconazole CAS_133855-98-8	In conclusion, the data currently available can be considered sufficient. However, due to high FQ and exceedance of PNEC at local level, epoxiconazole is proposed for inclusion in the 5 th WL in order to check more systematically at EU level the potential risks
Difenoconazole CAS_119446-68-3	In conclusion, available monitoring data are insufficient. Available data show significant FQ in fw and ww, but no exceedance of PNEC. Difenoconazole is not a priority for inclusion in the 5 th WL.
Triticonazole CAS_131983-72-7	Not found in ww (FQ=0%). All data show LOQ< PNEC. In conclusion, the data are sufficient to conclude no risk.
Cyazofamid CAS_120116-88-3	FQ to be checked (recent data 2018 – 2023 show FQ_analysis: 0% while data 2013- 2023 show FQ_analysis 4% and 1 site with conc > PNEC (MEC95: 0.002 μg/L; MEC99: 7,9 μg/L). Not found in ww (to be checked). Cat 4A in suspect screening. Conclusion: ?
Amisulbrom CAS_348635-87-0	Not data available in EMPODAT
Bromuconazole CAS_116255-48-2	Not data available in EMPODAT
Mefentrifluconazole CAS_1417782-03-6	Not data available in EMPODAT (to be checked)
Folpet (N-(trichloromethylthio)phthalimide) CAS 133-07-3	Data available in EMPODAT are from 3 countries (France, Netherlands and Ireland). The monitoring data available are insufficient. The available data show low frequency of quantification and values below the PNEC. Folpet is not stable. If it is included as part of the WL, then the transformation products should also be monitored.

New candidates – proposals NORMAN

Substance name / CAS number	Approved use	NORMAN comments
Terbutylazine CAS 5915-41-3	Herbicide	Data available for 16 countries and 2564 sites (2013-2023); of which 12 countries with 185 sites with recent data from 2018-2023. For 2018-2023: FQ_sites: 85%; FQ_analysis: 75%; Evidence of risk at 13% of the sites (MEC95: 0.5; MEC99: 2.87). The substance is classified Cat 1A! Moreover, additional data from Switzerland and Germany show that local exceedances are observed in small stream monitoring campaigns, and it is RBSP in some countries (e.g. Germany and Switzerland). In conclusion, significant FQ in fw and evidence of exceedances of PNEC justifies inclusion on 5 th WL
Terbutylazin-2- hydroxy CAS 66753-07-9	TP of Terbutylazine	Data available for 13 countries and 333 sites (2013-2023); of which 133 with recent data from 2018-2023. FQ_sites: 70%; FQ_analysis: 62%; Evidence of risk (MEC95: 0.06; MEC99: 0.2) at 52% of the investigated sites. The substance is classified Cat 1A (exceedance of large scale), however, due to a rather low PNEC. Conclusion: Terbutylazin-2-hydroxy has significant FQ in fw and potential exceedances of PNEC. Hence, the TP might be considered for inclusion in the 5 th WL, together with parent compound.
S-Metolachlor CAS 87392-12-9 (Metolachlor CAS 51218-45-2)	Herbicide approved as PPP. However, the renewal may not be granted due to GW risks	Data available for the legacy pollutant Metolachlor (51218-45-2) for 16 countries and 2284 sites (2013-2023); of which 169 with recent data from 2018- 2023. Very high FQ (FQ_sites: 86%; FQ_analysis: 63%) and evidence of risk (MEC95: 0.44; MEC99: 2.2 at 19% of the investigated sites (from recent data 2018-2023) The substance is classified Cat 1A (risk exceedance at large scale). Conclusion: significant FQ in fw and evidence of exceedance of PNEC justify inclusion on 5 th WL
Metolachlor OXA CAS 152019-73-3	TP metolachlor	Data available for fw from 13 countries, >100 sites and 1000 analysis (2013-2023), among which 12 countries, 119 sites and 513 analysis with recent data from 2018-2023. No exceedance of PNEC but high FQ: FQ_sites: 78%: FQ_analysis: 56% Metolachlor OA is a relevant TP of S-Metolachlor and might be considered for inclusion in the 5 th WL, together with the parent compound
Metolachlor ESA CAS: 171118-09-5	TP metolachlor	Similar as above
Lithium CAS: 7439- 93-2 (lithium carbonate; lithium chloride; lithium hydroxide)	Emerging risk due to increasing EU lithium mining projects in addition to energy transition which will heavily rely on the use of lithium batteries	Data available for fw from France >890 sites and 15,000 analysis (recent data). Very high: FQ_sites > 90%. Average concentration (with less than LOQ values = LOQ): 3.8 µg/L; MEC95: 23µg/L. According to KWR Report, all lithium concentrations in the Rhine river in the Netherlands exceeded the derived background concentration of 3.5 µg/L of lithium in surface waters in the Netherlands, derived by Osté et al. in 2013 (Osté, 2013). Due to hazard properties of lithium, current lack of data (insufficient number of countries with data) and increasing mining activities in Europe, plus potential local risks already identified, Lithium should be considered for inclusion in the WL.


Paper – NORMAN prioritisation scheme

- Almost ready for submission
- Contains the new extended prioritisation scheme, including
 - Target
 - Suspect screening
 - Cross-table to use combination of the two lines of evidence for final priority actions
- Highlights:
 - More emphasis of the combination of the 2 lines of evidence
 - Revised schemes to make it easier for the users to understand the categorisation process
 - Integration of a Mixture Risk Contribution (MRC) indicator i) for categorisation (Category 6) and ii) for ranking the compounds



Target monitoring prioritisation scheme

Suspect screening prioritisation scheme

Cross-table

Combining lines of evidence

Cat target	Cat suspect								
	Cat S1	Cat S3	Cat S2	Cat S5	Cat S4A	Cat S4C	Cat S6	Total substances	
Cat 1	3	n.a.	16	n.a.	12			31	
Cat 3	n.a.	1	n.a.	44	81	17	2	145	
Cat 2	8	n.a.	49	n.a.	197	91	2	347	
Cat 5	n.a.	12	n.a.	277	979	486	17	1771	
Cat 4	4			1	72	68		145	
Cat 6A (0.1≤RQ<1)	1	n.a.	10	n.a.	9	1		21	
Cat 6B (RQ<0.1)	1	n.a.	28	n.a.	63	17		109	
No data	3	472	26	5744	37907	18672	289	63113	
Total substances	20	485	129	6066	39320	19352	310	65682	
Legend:						-	·		
High priority	Medium priority	Low priority	Uncertainty						

Scoring system

	Indicators		Application to categories	Value	Sub-score	Final score
Exposure	Expo_ _{target}	El (Exposure	All categories Optional for Cat 2,4,5 (target monitoring)			Expo score = Expo _{_target} + Expo _{_suspect}
	Expo_ _{suspect}	FoA	All categories		Expo_ _{suspect} = FoA	
Hazard	Haz_Human Health Haz_Other properties of concern	CMR ED PBT /vPvB PMT/vPvM	All categories		Haz score is counted only once in the final score	Haz score ¹ = CMR + ED + PBT/vPvB + PMT/vPvM
Risk	Risk_ _{target}	MRC_target	All categories Only Cat 1, 3 and 6			Risk score = Risk _{_target} + Risk _{_suspect}
	Risk_ _{suspect}		All categories		Risk_suspect ² = FoE_suspect + MRC_suspect + EoE_suspect	
	-			Final sco	re (target + suspect screening)	= Expo + Haz + Risk

Final score = Expo_score (Expo_target + Expo_suspect) + Haz_score + Risk_score (Risk_target + Risk_suspect)

Case study on WW effluents to test the new workflow

- Prioritisation based on Suspect screening – DSFP / SUSPECT DB:
 - 65,690 substances from SusDat
 - From 2017 to 2021
 - 13 countries
 - 57 sites
 - 84 (24h composite) Wastewater effluents samples
 - Analytical technique employed for NTS data acquisition: LC-HRMS bbCID and AutoMS

- Prioritisation based on **Target monitoring** - EMPODAT:
 - 2,557 substances
 - From 2009 to 2021
 - 19 countries
 - 248,542 analysis

Results of the case study on CECs in wastewater

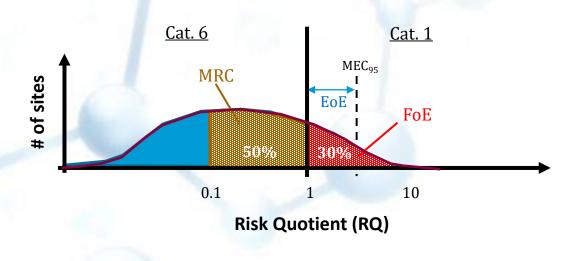
- Combined results from suspect screening and target workflows → 577 high priority compounds for actions (red zone)
- For many substances → insufficient data from target monitoring and uncertainty in identification from suspect screening
- Most of the compounds in the candidate list (64,825 chemicals) had only predicted PNECs → Cat S3 / S5

Cat target	Cat suspect							
	Cat S1	Cat S3	Cat S2	Cat S5	Cat S4A	Cat S4C	Cat S6	Total substances
Cat 1	3	n.a.	16	n.a.	12			31
Cat 3	n.a.	1	n.a.	44	81	17	2	145
Cat 2	8	n.a.	49	n.a.	197	91	2	347
Cat 5	n.a.	12	n.a.	277	979	486	17	1771
Cat 4	4			1	72	68		145
Cat 6A (0.1≤RQ<1)	1	n.a.	10	n.a.	9	1		21
Cat 6B (RQ<0.1)	1	n.a.	28	n.a.	63	17		109
No data	3	472	26	5744	37907	18672	289	63113
Total substances	20	485	129	6066	39320	19352	310	65682
Legend:								
High priority	Medium priority	Low priority	Uncertainty					

Mixture Risk Contribution (**MRC**)

Indicator for prioritisation of substances → identification of potential contributors to mixture risks

Mixture Risk Contribution (MRC) Indicator for NORMAN prioritisation scheme


So far: two risk-based indicators for the prioritisation of individual substances

Extent of Exceedance = *MEC*₉₅ / *PNEC*

→ How high is the PNEC exceeded?

Frequency of Exceedance = # sites (MEC_{site} > PNEC) / # all sites

→ How wide-spread are the exceedances?

➔ Mixture risks now integrated

Priority Candidates based on single Exceedance and Contributions to Mixture Risk

 $FoE_i = \frac{Nb \text{ sites where substance } i \text{ shows } RQi > 1}{Nb \text{ sites where substance } i \text{ was monitored}}$

 $MRC_i = \frac{Nb \text{ sites where substance i shows } 0.1 \le RQi < 1}{Nb \text{ sites where substance was monitored}}$

Prioritisation of risk drivers

FoE + MRC = Risk Score

→ Complementary indicators for ranking of substances

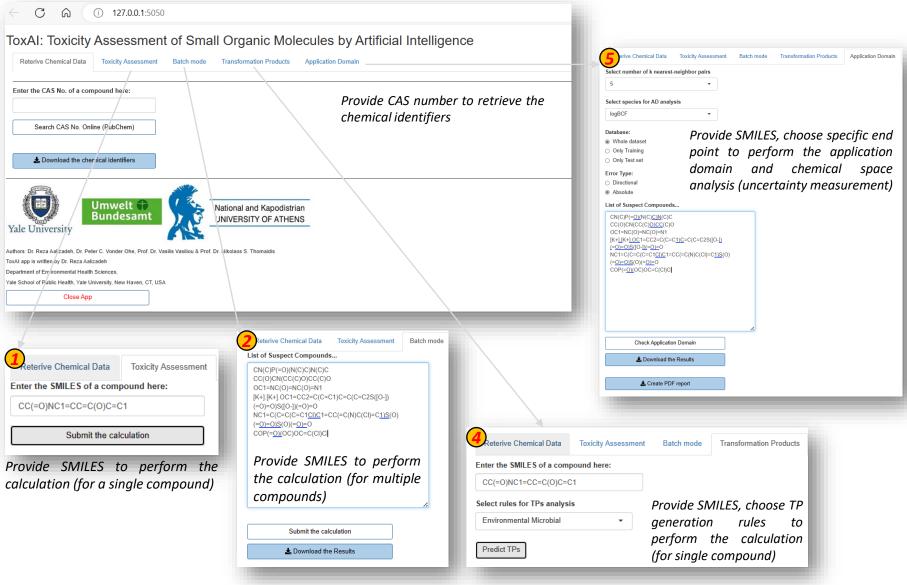
Name	FoE	MRC	FoQ
Benzo(a)pyrene	0,56	0,00	0,32
Pyrene	0,47	0,08	0,17
Chrysene	0,41	0,15	0,23
Perfluorooctanesulfonic acid (PFOS)	0,37	0,00	0,19
Diflufenican	0,28	0,25	0,40
Formaldehyde	0,27	0,00	0,08
Nicosulfuron	0,22	0,02	0,08
Dibenz(a,h)anthracene	0,21	0,25	0,26
Benzo(g,h,i)perylene	0,20	0,50	0,39
Propyzamide	0,20	0,26	0,18
Metolachlor	0,18	0,34	0,37
Flufenacet	0,18	0,18	0,10
Diclofenac	0,18	0,27	0,26
1,3,5-Triazin-2(1H)-one, 4-((1,1-dimethylethyl)amino)-6- (ethylamino)-	0,16	0,02	0,09
Benzo(b)fluoranthene	0,15	0,50	0,40
Benz(a)anthracene	0,14	0,44	0,21
Metazachlor	0,13	0,21	0,14
Carbamazepine	0,13	0,39	0,40
Dimethenamid	0,11	0,28	0,21
Butylated hydroxytoluene	0,09	0,00	0,01
Imazamox	0,08	0,04	0,03
Chlorate	0,08	0,36	0,22
Iobitridol	0,07	0,01	0,06
2-Ethylhexyl-2-cyano-3,3-diphenylacrylate	0,07	0,00	0,02
Iopromide	0,06	0,04	0,06
Imidacloprid	0,06	0,04	0,03
Benzo(k)fluoranthene	0,05	0,39	0,26
Bisphenol A	0,05	0,33	0,15

Prediction models

New models for prediction of toxicity endpoints / toxicity data Application domain for the prediction models that we use in NORMAN

Compilation of data and model predictions for hazard assessment

JPA 2023


- So far, NORMAN used acute predictions in Daphnia magna, Pimephales promelas and Selenastrum capricornutum (i.e. three trophic levels) → extended to additional species (3 additional fish species and 1 insect and 1 crustacean)
- Compilation of ca. 15,000 experimental rat toxicity endpoints, available from HH risk assessments, to derive a new ecotox thresholds for protection of birds and mammals → creation of a deep learning model for rat toxicity prediction
- Compilation of exp. data for BCF and Koc and other hazardous properties (ED, CMR, PBT, PMT)

JPA 2024

- With ToxAI, we propose to add predictions for:
 - the **acute toxicity** of up to 5 crustaceans (including 3 marine species), 8 fish species (incl. 1 marinefish), 2algae and 2 aquatic plants.
 - the **chronic toxicity** in up to 3 fish species, Daphnia and algae, allowing for derivation of chronic-based P-PNEC, using a lower AF.
- IMPORTANT: Definition of model's applicability domain → development of a harmonised procedure

ToxAI; Open source R and Python-based app to perform in silico risk assessment and environmental fate analysis towards more than **105** end points

Graphical User Interface:

Reterive Chemical Data Toxicity Assessment Batch mode Transformation Products Application Domain **ToxAl;** All 105 end points calculated for input compound Enter the SMILES of a compound here: CC(=O)NC1=CC=C(O)C=C1 Water Hazard Classes (WGK) Aedes **Honey Bees** Single Cyprinodon **Xenopus Laevis** Select rules for TPs analysis Earthworm Not hazardous: 0% (Apis Mellifera) Aegypti variegatus chemical (Eisenia Fetida) cyp450:Environmental Microbial Calculate all 105 end points for Slightly hazardous to water: 100% Hazardous to water: 0% calculation Predict TPs predicted TPs and assign them Extremely hazardous to water: 0% 1.154 g/L 34.18 µg/bee as weight in network analysis 8.64 mg/L 85.97 mg/L 1.04 g/L Select by Types 🗸 🗸 Americamysis Bahia Saltwater Amphibian Insects Skeletonema Soil TPs Salt water 9.16 mg/L λmax (solvent) second/multiple TPs first Artemia Salina H,O: 327 nm **Chemical Structure:** rules generation ACN: 306 nm 335.37 µg/L generation 537.85 mg/L THF: 311 nm Anabaena EtOH: 377 nm Hyalella Azteca Marine **Blue Green** MeOH: 303 nm DMSO: 298 nm DMFA: 351 nm 108.64 µg/L 605.93 µg/L CH2Cl2: 323 nm Tetrahymena EtOAc: 335 nm Lemna **Pyriformis** Hexane: 294 nm Acetone:392 nm Gibba: 1.21 mg/L Gell National and Kapodistrian Chloroform: 321 nm pIGC₅₀(48 hours): -0.39 Minor: 295.42 µg/L UNIVERSITY OF ATHENS Cyclohexane: 313 nm Single Yale University Aliivibrio fischeri 1,4- Dioxane: 394 nm Pseudokirchneriella Subcapitata (Microtox assay Abraham Solvation Equation Desc. A:0.713 Desc. B:0.829 Desc. E:1.23 Desc. L:6.2 Desc. S:1.1 Desc. V:1 18 P Chemical Smell 0 IBC50= 213.31 mg/L Fruity:6.9% Floral: 0% Woody: 0% Green Grassy: 91% Meaty Sulfurous: 0% 72 hours: 574.38 µg/L Gammarus Fatty: 0% Nutty: 0% Miscellaneous: 2% Minty: 0% Faint & balsamic: 0% ŝ Daphnia Magna Glycine Fasciatus Chemical Tastant max Sweetness:0% Bitterness: 100% Umaminess:0% Sourness: 0% Multitaste: 0% Chronic: 2.79 mg/L Tastelessness:0% Non-sweetness:0% Miscellaneous (e.g. burning, tingling etc.):0% 3.51 (Al lb/acre) 48 hours: 41.96 mg/L 13.75 ma/L **Chemical Properties** Human Zea Mays **Oncorhynchus Mykiss** Ceriodaphnia MW: 151 1 Liver Injury: Unsafe (Prob= 99.8%) Dubia Androgen Activity: Inactive (Prob= 100%) Plants pka: 9.424 (acidic) 5.663 (Basic) $\Theta \oplus$ 00 Dynamically select from network to Carcinogenic: Carcinogenic (Prob= 100%) logKow: 0.1715 1.71 (Al Ib/acre) Chronic: 700.12 ug/L Eye Corrosion: Non-Corrosive (Prob= 100%) 19.19 ma/L show a Table with more details 4 days: 789 µg/L Show 10 ✓ entries logBCF: 0.243 L/kg Eye irritation: Non-Irritant (Prob= 98.7%) 2 days: 3.41 mg/L **Terrestrial** Avena sativa 🐇 logKoa: 9.52 Cardiotoxicity: Unsafe (Prob= 71.7%) **Pimephalas** Promelas 0.19 (Al Ib/acre) logKoc: 1.6 L/kg (Mobile in Soil) Skin Sensitisation: Sensitising Agent (Prob= 79.5%) AMES Mutagenicity: Non-Mutagenic (Prob= 99.6%) logBBB: -0.384 Lactuca sativa 96 hours: 487.92 mg/L Respiratory Disease: Unsafe (Prob= 100%) logHL: -8 79414 Chronic: 699.41 µg/L Agnostic: Inactive (Prob= 85.9%) 0.53 (Al Ib/acre) **Endocrine Receptor** log(kNO₂): -11.352 Leuciscus idus Binding: Inactive (Prob= 91.4%) **Oryzias Latipes** logD(pH=7.4): 0.527 Teratogenicity: Teratogenic (Prob= 62.6%) Brassica Boiling point: 335.2 °C at 760mmHg Intestinal Absorption: Active (Prob= 99.8%) 3.72 mg/L 135.28 mg/L oleracea Melting point: 196.5 °C at 760mmHg CYP3A4: Inactive (Prob= 100%) CYP450 Receptor Poecilia Reticulata **Carassius** Auratus CYP2C9: Inactive (Prob= 100%) 0.38 (Al Ib/acre) Water Solubility: 4.295 g/L Maximum Recommended owing 1 to 3 of 3 Ethanol Solubility: 154.227 g/L elect species for Tesicity Mammals Daily Dose [log(mg/kg/day)]:1.69 Abiotic degradation (logAOH): -10.026 Rat 4.71 mg/L 254.64 mg/L Exposure Limits (long-term 8h [mg.m-3]): 10 11 (oral dose) Caco-2 cell logPapp(cm/s): -4 766 Zebrafish Zebrafish Biodegradation: Readily biodegradable (Prob= 99.7%) 2220.54 mg/kg (Danio rerio) Embryo Mode of toxic action MOA **Guinea** Pig Avian Provides uncertainty values toward all 105 end points Reactivity: 0% intraperitoneal LD₅₀ 48 hours: 2.39 mg/L Chronic: Neurotoxicity: 0% 515.97 mg/kg Colinus Anas Coturnix 96 hours: 3.91 ma/L Mean Similarity vs Mean Error Narcosis: 100% Not Relia Virginianus 🔊 Platyrhynchos Lepomis Macrochirus Japonica / Not Reliable Rabbit 3 (probability) **Electron transport** intraperitoneal LD₅₀

15.05 ma/L

Ictalurus Punctatus

3.62 mg/L

Cyprinus Carpio

10.52 mg/L

Dim

0.2

0.4 0.2 0.0 All

7 6 5 4

Mean Similarity at k value

0.72 0.74 0.76 0.78

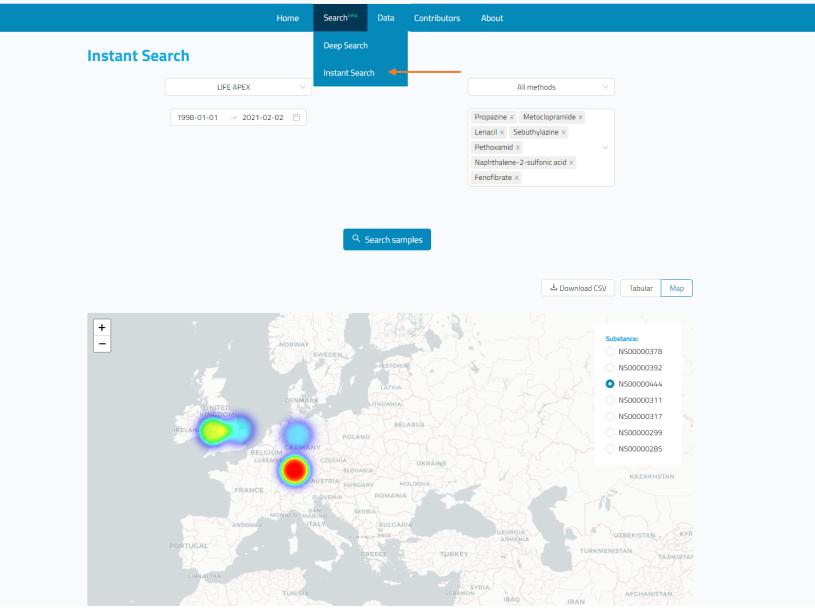
0.2 0.4

Dim

2716.08 mg/kg Dog Intravenous LD_{sr} 183.71 ma/ka 1766.8 mg/kg

31.03 mg/kg 2593.64 (ppm/diet)

inhibition: 0% AChE inhibition: 0% lono / Osmoregulatory / Circulatory impairment: 0%


Preparing JPA 2024

WG-1 Prioritisation

New development in the prioritisation tool Implementation of the online prioritisation tool linking:

- target monitoring data (EMPODAT)
- suspect screening data (EMPODAT-SUSPECT under construction)
- PNEC values (ECOTOXICOLOGY database)
- Bioassays, Bioactivity database? etc.

EMPODAT-Suspect

Prman

🖀 NORMAN WEBSITE | 😳 NORMAN DATABASE SYSTEM | 🖀 HOME | 🔿 LOGIN

SEARCH STATISTICS ~ DCT DOWNLOAD

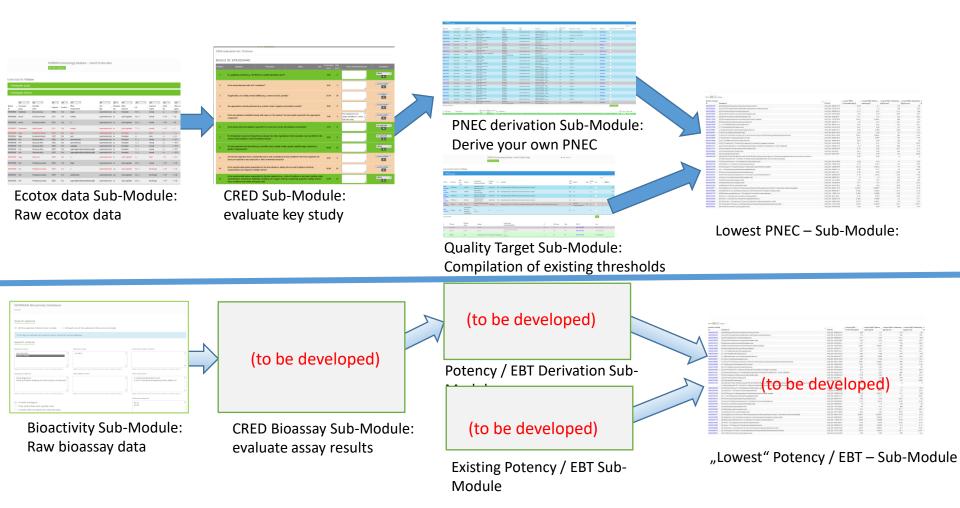
NORMAN EMPODAT - SUSPECT Database

Update Search / New Search / Results

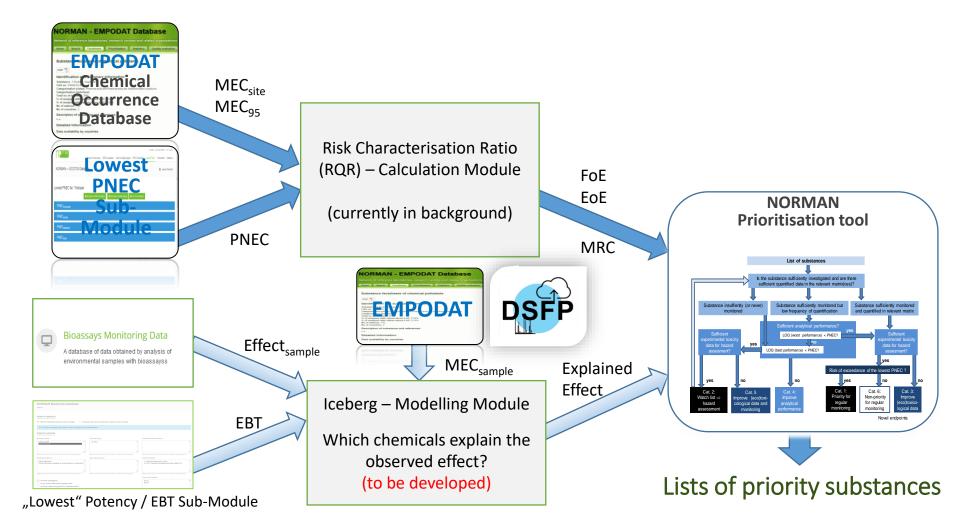
Export to CSV

Show 200 ∽ entries

		Substance	Concentration [‡]	Unit 🔶	Ecosystem/Matrix	Sampling Site/Station	Sampling Date	Country 🔶
▼ Reset	▼ Set	▼ Set	▼ Set	✓ ▼ Set	✓ ▼ Set	▼ Set	▼ Set	∽ ▼ Set
Ð	2236809	Caffeine	0.007	µg/l	Waste water - Municipal	Effluent wastewater from Uzhgorod	2019/08/27	Ukraine
Œ	2236810	Caffeine	0.001	µg/l	Waste water - Municipal	Effluent wastewater from Vratsa	2019/08/26	Bulgaria
Œ	2236811	Caffeine	0.003	µg/l	Waste water - Municipal	Effluent wastewater from Giurgiu	2019/08/26	Romania
Œ	2236812	Caffeine	0.002	µg/l	Waste water - Municipal	Effluent wastewater from Sabac	2019/08/26	Serbia
Œ	2236813	Caffeine	0.013	µg/l	Waste water - Municipal	Effluent wastewater from Zupanja	2019/08/26	Croatia
Œ	2236814	Caffeine	0	µg/l	Waste water - Municipal	Effluent wastewater from Novo Nesto	2019/08/26	Slovenia
Œ	2236815	Caffeine	0.001	µg/l	Waste water - Municipal	Effluent wastewater from Gyor	2019/08/26	Hungary
Œ	2236816	Caffeine	0.002	µg/l	Waste water - Municipal	Effluent wastewater from Bratislava	2019/08/26	Slovakia
Œ	2236817	Caffeine	0.002	µg/l	Waste water - Municipal	Effluent wastewater from Hodonin	2019/08/26	Czech Republic


Suspect screening prioritization exercises

https://norman-data.eu/nds_suspect/#!/customized


NORMAN Database System × +				•
→ C				२ 🖈 🗯 🍔
rman		MORMAN WEBSITE 🌐 NORMAN DATABA	ISE SYSTEM 🎢 HOME	
		STATISTIC	S ~ MAPS	
NORMAN EMPOI	DAT - SUSPECT Database ^R Customized Statistics			
Substances (list of NORMAN SUSDAT IDs separated b	y a comma)			//
Substance	Country	>= X countries with analysis	Positive / Negative	
All	All	4	All	•
Matrix	From year To year	>= X sites with analysis	Nominate identification	
All	2016 - 2021 -	100	All	•
Fractions	Waste water	>= X sites with conc > LoQ	Identifications decision based on model	
All	All	50	All	•
River Basin / Sea region	Dilution factor waste water *	>= X sites with LOQmin < lowest PNEC	Predicted fragments	
All	5 🗸	100	All	•
Source (list of data files)	Ground water PNECs		Spectral similarity	
All	Same as freshwater		All	•
Run	Marine biota PNECs		From To	
	PNECbio_marine -		0 1	
	* IF matrix All OR Waste water THEN conversion from $c_{\!_{WW}}$ to $c_{\!_{fw}}$			

Analogy of Ecotox Module and the new Bioactivity DB Module

Analogy of Risk Modelling and Iceberg Modeling and link to Prioritisation

New development in the prioritisation tool

- Improving the interface of the target prioritisation tool
- Visualisation features
- Defining your own categories based on criteria and associated indicators (PARC)

Automated tool for prioritisation of substances based on target monitoring data

Prioritisation workflow for target monitoring data is implemented in an automated prioritisation module (see <u>demonstration</u>)

The system is connected with the NDS's modules

Customised for application to one environmental compartment but there is high flexibility of the query system

NORMAN Database System ^{<u>R</u>} Customized Statistics

Substance	Country	>= X countries with analysis	
Matrix All Freshwater Marine water Waste water Run	From year All Dilution factor * 5 * IF matrix All OR Waste water THEN conversion from c_{ww} to c_{fw} 	4 >= X sites with analysis 100 >= X sites with conc > LoQ 50 >= X sites with LOQmin < lowest PNEC 100	

<

NORMAN Database System ^{<u>R</u>} Customized Statistics

Substance	Country		>= X countries	s with	
All	All		analysis		
	Austria	^	4		
Matrix	Belgium		>= X sites with	n analvsis	
All	Bulgaria			_	
Fractions	Croatia		100	÷	
	Cyprus		>= X sites with	n conc >	
All	Czech Republic		LoQ		
Run	Denmark	m	50	*	
	Finland	~			
			>= X sites with		
			< Iowest PNE	С	
			100		

٨

s plus visités 🙌 PRIVATE AREA: Worki 📃 Citrix 🖨 InfoView 🖨 Tok	en 📘 Intranet 🌐 iFolder 🗹 Webmail INERIS 📘 Portail du Salarié	INERIS		
All	All		analysis	
			4	* *
Matrix	From year			
Waste water	All	•	>= X sites with a	nalysis
			100	÷
Fractions	Dilution factor *			
All	5	•	>= X sites with c	onc >
			LoQ	
Run	1	m	50	* *
	2			
	5		>= X sites with L	OQmin
	10		< Iowest PNEC	
			100	÷

List of indicators and cut-off values applied for the allocation of the candidate substances to action categories 1 to 6 (PDF format)

<

>

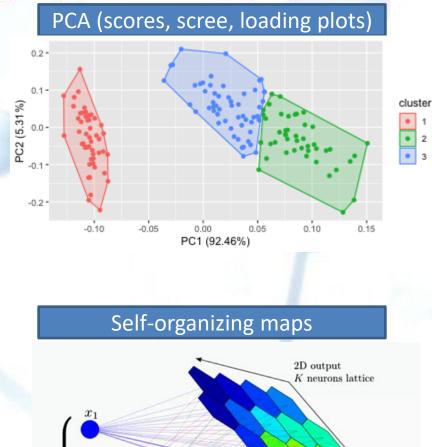
v

← → C û	ed (133 %) ••• 🛡 🏠	🤉 Rechercher
🔅 Les plus visités 🎧 PRIVATE AREA: Worki 📓 Citrix 🖨 InfoView 🖨 Token 🔳 Int	ranet 🜐 iFolder 🛛 Webmail INERIS 📘 Portail du Salarié INERIS	
		5 M (1 10
Substance	Country	>= X countries with
All	All	analysis
		4
Matrix	From year	•
		>= X sites with analysis
Freshwater	All 👻	
		100 ≑
Fractions	Dilution factor *	
		>= X sites with conc >
All	- 1 - ▼	LoQ
Run	* IF matrix All OR Waste water THEN conversion from	50 🗧
	c _{ww} to c _{fw}	
		>= X sites with LOQmin
		< lowest PNEC
<		>

Substance	🕴 SusDat ID 🌢	CAS no.	Lowest PNEC	Matrix	No. of Analyses	No. of Analyses with ≑ conc > LoQ	No. of Basins [⊕]	No. of ¢	No. of Sites	No. of Years	Category	FoE _≜ score	EoE score [⊕]	Final RISK _v score	Final HAZARD ≑ score	Final EXPOSURE ≑ score	Final _∲ score [∲]
All	All	All		А	AI	AI		All			1 🛞			1. C	А	All	
1,3,5-Triazin-2(1H)-one, 4-((1,1- dimethylethyl)amino)- 6-(ethylamino)-	NS00000294	CAS_RN: 66753-07-9	0.0073	Freshwater	711	455	66	12	136	3	1A	0.61	0.25	0.86	0.5	0.74	2.1
Ibuprofen	NS0000214	CAS_RN: 15687-27-1	0.011	Freshwater	536	346	66	12	142	3	1A	0.5	0.25	0.75	0.52	0.64	1.9
Diclofenac	NS0000212	CAS_RN: 15307-86-5	0.05	Freshwater	893	704	83	12	166	3	1A	0.34	0.25	0.59	0.56	0.81	2
Nicosulfuron	NS00008411	CAS_RN: 111991-09-4	0.0087	Freshwater	337	129	50	12	116	3	1A	0.34	0.25	0.59	0.5	0.62	1.7
Chlorpyrifos (Chlorpyrifos- ethyl)	NS00000445	CAS_RN: 2921-88-2	0.00046	Freshwater	692	255	33	13	125	3	1A	0.33	0.1	0.43	0.69	0.61	1.7
Perfluorooctanesulfonic acid (PFOS)	NS00010280	CAS_RN: 1763-23-1	0.002	Freshwater	364	241	25	12	109	3	1A	0.29	0.1	0.39	0.5	0.71	1.6
Metazachlor	NS0000249	CAS_RN: 67129-08-2	0.02	Freshwater	1130	571	73	12	169	3	1A	0.22	0.1	0.32	0.62	0.69	1.6
Diflufenican	NS00008837	CAS_RN: 83164-33-4	0.01	Freshwater	1120	321	81	12	174	3	1A	0.21	0.1	0.31	0.44	0.26	1
Imidacloprid	NS0000361	CAS_RN: 138261-41-3	3 0.013	Freshwater	500	243	41	12	114	3	1A	0.18	0.1	0.28	0.5	0.72	1.5
Di(2-ethylhexyl)phthalate (DEHP)	NS00010909	CAS_RN: 117-81-7	1.3	Freshwater	1033	879	77	11	162	3	1A	0.14	0.1	0.24	0.28	0.57	1.1
Terbutylazine	NS0000258	CAS_RN: 5915-41-3	0.22	Freshwater	1493	1120	88	12	185	3	1A	0.13	0.1	0.23	0.5	0.84	1.6
Metolachlor	NS0000248	CAS_RN: 51218-45-2	0.2	Freshwater	1294	817	75	12	169	3	1A	0.11	0.1	0.21	0.38	0.81	1.4
Flufenacet	NS0000324	CAS_RN: 142459-58-3	3 0.048	Freshwater	596	200	64	12	159	3	1A	0.11	0.1	0.21	0.44	0.5	1.2
Bisphenol A	NS00008865	CAS_RN: 80-05-7	0.24	Freshwater	972	800	74	12	157	3	1A	0.076	0.1	0.18	1	0.9	2.1

From data to info

Visualisation of the results

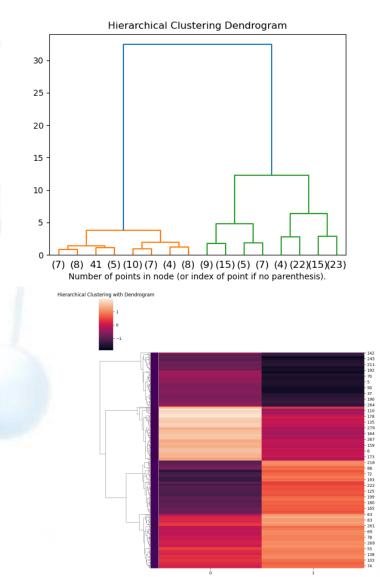

- What is already possible today:
 - Downloadable Excel file with the list of susbstances by category and associated scores
- What could be improved (short-term, long-term)?
 - Heatmaps (overview of results by compartment, by year, by sector of use)
 - Mapping of substances against selected indicators
 - Focus on individual substances (e.g. star / spider-web charts)

From data to info

The prioritisation system

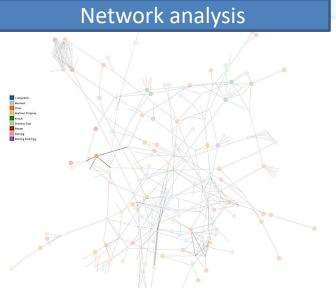
- Today
 - Customised query for prioritisation of CECs in a single environmental compartment + identification of substances which cannot be evaluated due to current knowledge gaps
- What could be improved:
 - User is in controls of the queries and list of indicators
 - Unsupervised mapping of substances

Unsupervised clustering

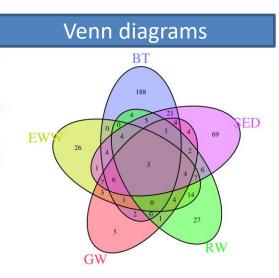

Weights matrix

Neuron i

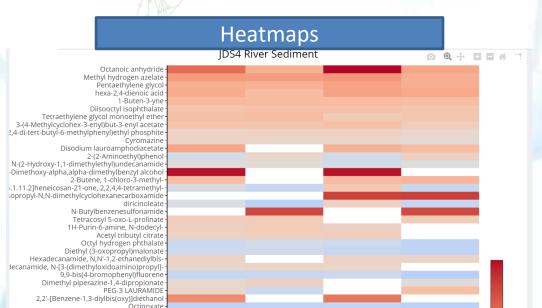
Input layer


 x_n

Hierarchical clustering



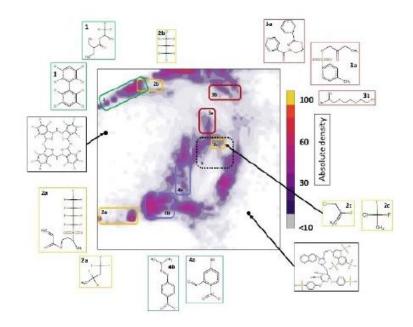
Visualisations

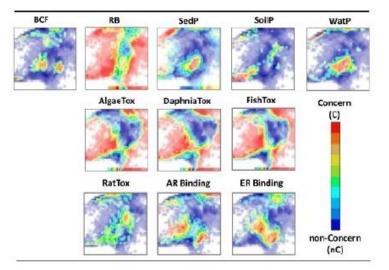


Trend analysis Bream 1e+05 page 5e+04 0e+00 2005 2010 2015 1995 2000 date trend p.value. linear 0.0019 < 0.05 non-linear

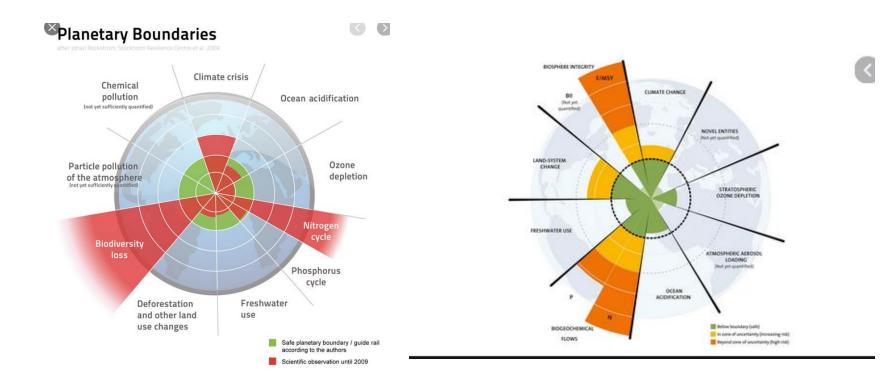
Georgaphical distribution maps

Occurrence of contaminants in the environment

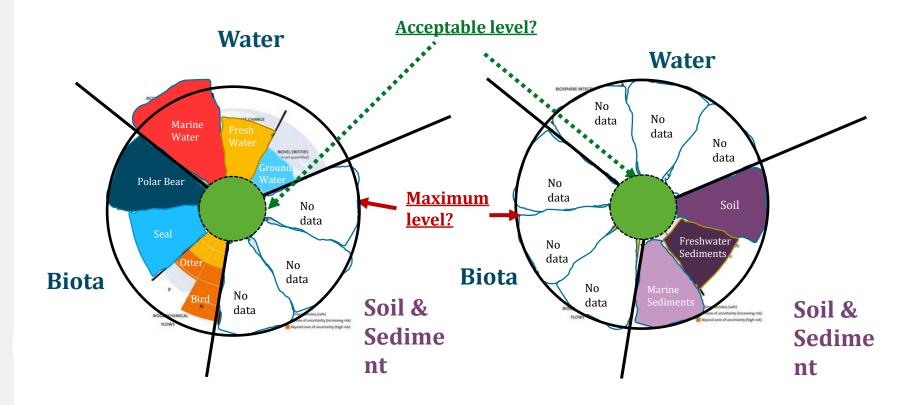



Mapping of properties based on similar structures

Chemical space

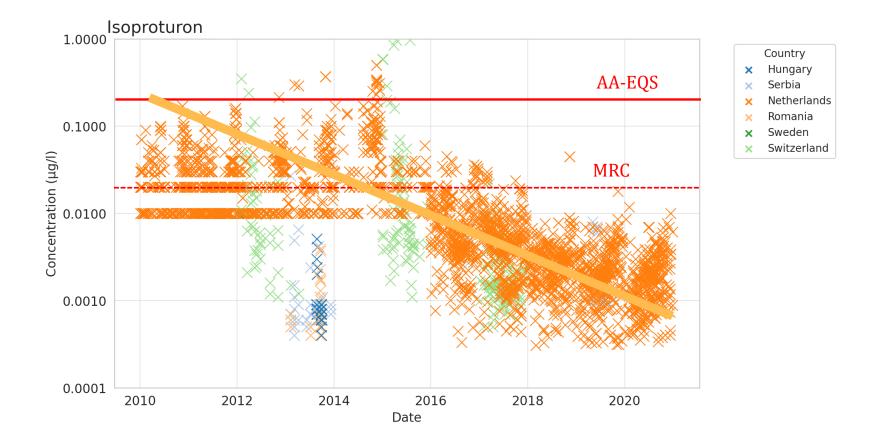

Lunghini et al., 2020 DOI: 10.1002/minf.202000232

Endpoints / properties scaled from 0 (non-concern) to 1 (concern)



It is possible to derive **Overall score = SUM of the scores** of the different endpoints

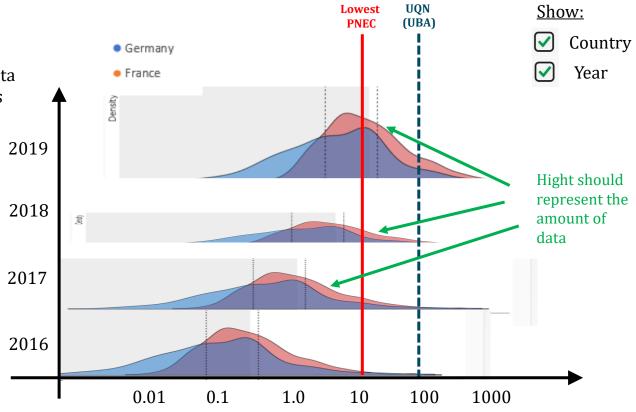
Idea to use a "Star" or "Spider-web" Chart, based on the concept of planatory boundaries"


Theoretical Example: exceedance for marine data

Compound A

Compound B

Visualisation of Exceedances and Timetrends



<u>In one view:</u> number of exceedances (recent or old), contribution to mixture risks as well as estimated trends

Different Visualisation

Example: fictive

- Normal distribution no raw data ٠
- Different "countries" with colors ٠
- All PNEC's can be shown ٠
- Time trends ٠

Lowest

Prioritisation scheme

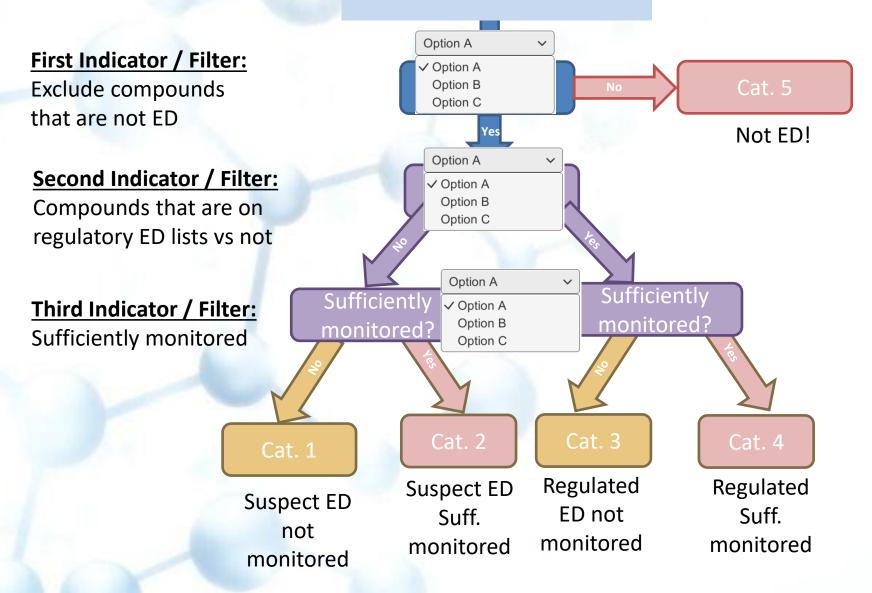
UPGRADING THE SYSTEM

COLLABORATION WITH PARC

PARC Workshop 12-13 October: main conclusions

- Consensus about the categorisation concept
- System flexible for new prioritisation queries (regulatory and research needs)
- Extending the list of indicators
- The user can customise:
 - the list of indicators
 - the weight of each indicator for the scoring

NORMAN Database System


Substance All Matrix All | Freshwater Marine water Waste water Run

Substance 1	Kow Bressure Koc Biodestatine Li serados	C Water	Pure internation in the providence of the provid	BCr Sediment	Lo/ 2 / 2	Long La	Emission & transport	
O/ G/ Z/ Z/ Z/ Substance 1 Substance 2	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>> </u>	<u> </u>	<u>\</u>	<u>े/ २/ ट</u>	\$/ \$ / •	<u>\$\</u> 0	
Substance 3								
Substance 4 Substance 5								
Substance 5								
Substance 7								
Substance n								
							7	
omized Statistics			1	Ē	Optic		-	
	>- X countries with		1	Ē	Optic		-	
Country	>= X countries with analysis]	ľ	Optic ✓ Opt			
	analysis	6			✓ Opt	ion A		~
Country	analysis 4				✓ Opt Opt	ion A ion B	3	
Country	analysis 4 >= X sites with analy	ysis			✓ Opt Opt	ion A	3	~
Country All From year	analysis 4 >= X sites with analy				✓ Opt Opt	ion A ion B	3	~
Country All From year All	analysis 4 >= X sites with analy	ysis হ			✓ Opt Opt	ion A ion B	3	~

Prmaņ

Example: Insufficiently monitored ED

List of subtances in SusDat

Conclusions for next JPA?

Environmental status indicators

- Proposals for status indicators:
 - Number of chemicals exceeding the PNEC (MRC, FoE)
 - Extent of exceedance (RQ_sum)
 - Other proposals?

Indicators for Prioritisation of substances vs Indicators of Environmental status

 $FoE_i = \frac{Nb \text{ sites where substance } i \text{ shows } RQi > 1}{Nb \text{ sites where substance } i \text{ was monitored}}$

 $MRC_i = \frac{Nb \text{ sites where substance } i \text{ shows } 0.1 \le RQi < 1}{Nb \text{ sites where substance was monitored}}$

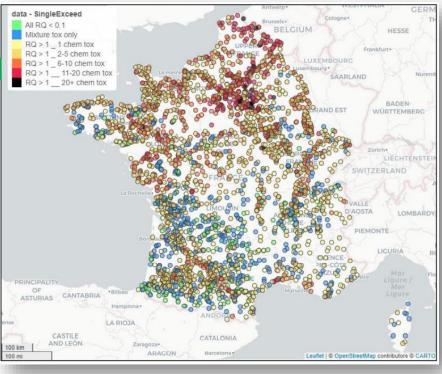
 $FoE_status = \frac{Nb \ sites \ where \ RQmax \ge 1}{Nb \ sites \ monitored}$ $MRC_status = \frac{Nb \ sites \ where \ RQsum > 1 \ and \ RQmax \ < 1}{Nb \ sites \ monitored}$

Prioritisation of risk drivers

- FoE + MRC = Risk Score
- → Ranking of substances

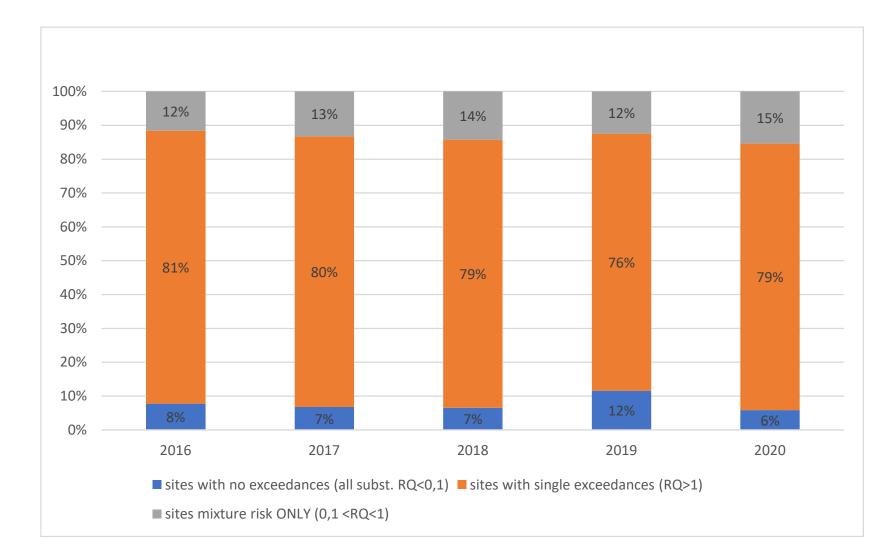
Environmental Status

FoE_status + MRC_status = Total Risk sites


- ➔ Risks associated to single substances and mixtures at each site
- → Improvement of the environmental status

Priority Candidates based on single Exceedence and Contributions to Mixture Risk

Substance prioritisation indicators


Name	FoE	MRC	FoQ
Benzo(a)pyrene	0,56	0,00	0,32
Pyrene	0,47	0,08	0,17
Chrysene	0,41	0,15	0,23
Perfluorooctanesulfonic acid (PFOS)	0,37	0,00	0,19
Diflufenican	0,28	0,25	0,40
Formaldehyde	0,27	0,00	0,08
Nicosulfuron	0,22	0,02	0,08
Dibenz(a,h)anthracene	0,21	0,25	0,26
Benzo(g,h,i)perylene	0,20	0,50	0,39
Propyzamide	0,20	0,26	0,18
Metolachlor	0,18	0,34	0,37
Flufenacet	0,18	0,18	0,10
Diclofenac	0,18	0,27	0,26
1,3,5-Triazin-2(1H)-one, 4-((1,1-dimethylethyl)amino)-6- (ethylamino)-	0,16	0,02	0,09
Benzo(b)fluoranthene	0,15	0,50	0,40
Benz(a)anthracene	0,14	0,44	0,21
Metazachlor	0,13	0,21	0,14
Carbamazepine	0,13	0,39	0,40
Dimethenamid	0,11	0,28	0,21
Butylated hydroxytoluene	0,09	0,00	0,01
Imazamox	0,08	0,04	0,03
Chlorate	0,08	0,36	0,22
lobitridol	0,07	0,01	0,06
2-Ethylhexyl-2-cyano-3,3-diphenylacrylate	0,07	0,00	0,02
Iopromide	0,06	0,04	0,06
Imidacloprid	0,06	0,04	0,03
Benzo(k)fluoranthene	0.05	0.39	0.26
Bisphenol A	0,05	0,33	0,15

Environmental status indicators

Number of compounds:	1200
Number of sites:	3000

Percentage of sites with no risk of exceedances, with risk of exceedance for individual substances or with mixture risks only – sites with ≥ 15 substances monitored (overview per year)

Other examples of environmtal status indicators ?

- Number of chemicals exceeding the PNEC (MRC, FoE)
- Extent of exceedance (RQ_sum)
- Number of samples and substances measured at each sites
- Number of detected substances / Total measured substances
- Other proposals?

Conclusions for next JPA?

Factsheets

 How to deal with multiple values (predicted/experimental)

 creation of DCT and modules
 (important also for the Factsheets)

Conclusions for next JPA?

 How to deal with multiple values (predicted/experimental) – creation of DCT and modules (important also for the Factsheets)

